Skip to main content

Human Influence Versus Natural Climate Variability

  • Chapter
  • First Online:
The Holocene and Anthropocene Environmental History of Mexico

Abstract

This chapter discusses past climate change drivers and ecological responses in southeastern Mexico. Ancient human influence on ecosystems is evident from sediment cores. Past human activities are evident in fossil records but make the interpretation of the past climatic signals more difficult. Conversely the human signal provides important evidence for understanding the level of human impact on the climate system and ecosystems. Four sediment cores at different locations of the Yucatán Peninsula were analyzed for fossil pollen and geochemistry. Human-induced ecological change was evaluated compared to climate-driven environmental change. Fossil pollen gave a clear signal of landscape and precipitation change in the Preclassic and Classic periods. The geochemical ratios provided evidence of local and regional hydrological change. The Chumpich Lake registry reveals that the management of low forests was efficient and indicates good hydrological control in the landscape. However this evidence is different in other sites from Yucatán Peninsula with deficient erosion control. Probably due to the differential climate response in the Chumpich–Uxul region, the drought was not as drastic as in other places.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akers PD, Brook GA, Railsback LB et al (2016) An extended and higher resolution record of climate and land use from stalagmite MC01 from Macal Chasm, Belize, revealing connections between major dry events, overall climate variability, and Maya sociopolitical changes. Palaeogeogr Palaeoclimatol Palaeoecol 459:268–288

    Google Scholar 

  • Alexander RT (2000) Patrones de asentamiento agregados en el Sudoeste de Campeche, Una visión desde la Isla Cilvituk. Mesoam 39:359–391

    Google Scholar 

  • Anderson DG, Maasch KA, Sandweiss DH et al (2007) Climate and culture change: exploring Holocene transitions. In: Anderson DG, Maasch KA, Sandweiss (eds) Climate change and cultural dynamics: a global perspective on mid-Holocene transitions. Elsevier Inc, pp 1–23. San Diego, CA, USA

    Google Scholar 

  • Aragón-Moreno AA, Islebe GA, Torrescano-Valle N (2012) A ~3800-yr, high-resolution record of vegetation and climate change on the north coast of the Yucatan Peninsula. Rev Palaeobot Palynol 178:35–42

    Google Scholar 

  • Beach T (1998) Soil constraints on northwest Yucatán: pedo-archaeology and Maya subsistence at Chunchucmil. Geoarchaeology 13:759–791

    Google Scholar 

  • Beach T, Dunning NP, Luzzadder-Beach S et al (2006) Ancient Maya. Impacts on soils and soil erosion. Catena 65:166–178

    Google Scholar 

  • Beach T, Luzzadder-Beach S, Dunning N et al (2009) A review of human and natural changes in Maya Lowland wetlands over the Holocene. Quat Sci Rev 28:1710–1724. https://doi.org/10.1016/j.quascirev.2009.02.004

    Article  Google Scholar 

  • Birks HJB (2012) Ecological palaeoecology and conservation biology: controversies, challenges, and compromises. Int J Biodivers Sci Ecosyst Serv Manag 8(4):292–304. https://doi.org/10.1080/21513732.2012.701667

    Article  Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6(3):457–474. https://projecteuclid.org/ download/pdf_1/euclid.ba/1339616472

    Google Scholar 

  • Boserup E (1965) The conditions of agricultural growth: the economics of agrarian change under population pressure. Aldine Publishing, Chicago, p 124

    Google Scholar 

  • Brenner M, Rosenmeier MF, Hodell DA et al (2002) Paleolimnology of the Maya Lowlands. Anc Mesoam 13:141–157

    Google Scholar 

  • Brooks N (2006) Cultural responses to aridity in the middle Holocene and increased social complexity. Quat Int 151:29–49

    Google Scholar 

  • Buckler ES, Stevens NM (2006) Maize origins, domestication, and selection. In: Motley TJ, Zerega N, Cross H (eds) Darwin’s harvest: new approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 67–90

    Google Scholar 

  • Büntgen U, Myglan VS, Ljungqvist FC et al (2016) Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat Geosci 9:231

    Google Scholar 

  • Carrillo-Bastos A, Islebe GA, Torrescano-Valle N et al (2010) Holocene vegetation and climate history of central Quintana Roo, Yucatán Península, Mexico. Rev Palaeobot Palynol 160:189–196

    Google Scholar 

  • Carrillo-Bastos A, Islebe GA, Torrescano-Valle N (2013) 3800 years of quantitative precipitation reconstruction from the Northwest Yucatan Peninsula. PLoS One 8(12) . Public Library of Science):e84333

    PubMed  PubMed Central  Google Scholar 

  • Caseldine CJ, Turney C (2010) The bigger picture: towards integrating palaeoclimate and environmental data with a history of societal change. J Quat Sci 25(1):88–93. https://doi.org/10.1002/jqs.1337

    Article  Google Scholar 

  • Chepstow-Lusty AJ, Frogley MR, Bauer BS et al (2009) Putting the rise of the Inca Empire within a climatic and land management context. Clim Past 5:375–388

    Google Scholar 

  • Chew SC (2007) The recurring dark ages: ecological stress, climatechanges, and system transformation. Altimira Press, Lanham

    Google Scholar 

  • Clark JE, Gibson JL, Zeidler JA (2010) First towns in the Americas: searching for agricultura and other enabling conditions. In: Bandy M, Fox J (eds) Becoming villagers: comparing early village societies. Amerind studies in archaeology. The University of Arizona Press, Tucson, pp 205–245

    Google Scholar 

  • Conroy JL, Overpeck JT, Cole JE et al (2008) Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat Sci Rev 27:1166–1180

    Google Scholar 

  • Coombes P, Barber K (2005) Environmental determinism in Holocene research: causality or coincidence? Area 37(3):303–311

    Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277

    CAS  PubMed  Google Scholar 

  • Curtis JH, Hodell DA, Brenner M (1996) Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 years, and implications for Maya cultural evolution. Quat Res 46:37–47

    CAS  Google Scholar 

  • Day JW, Folan WJ, Gunn JD, Yanez- Aranciabia A (2004) Patrones de productividad costera durante el ascenso del nivel del mar postglacial: Posibles implicacions para la formación del estado pristino. In XIV Encuentro Internacional: Los Investigadores de la Cultura Maya. Campeche

    Google Scholar 

  • Day JW, Gunn JD, Folan WJ, Yáñez-Arancibia A et al (2007) Emergence of complex societies after sea level stabilized. EOS Trans Am Geophys Union 88(15):170–171

    Google Scholar 

  • Day JW, Gunn JD, Folan WJ, Yáñez-Arancibia A et al (2012) The influence of enhanced post-glacial coastal margin productivity on the emergence of complex societies. J Island Coast Archaeol 7(1):23–52. https://doi.org/10.1080/15564894.2011.650346

    Article  Google Scholar 

  • Delcourt PA, Delcourt HR (1998) Paleoecological insights on conservation of biodiversity: a focus on species, ecosystems, and landscapes. Ecol Appl 8(4):921–934

    Google Scholar 

  • deMenocal PB (2001) Cultural responses to climate change during the late holocene. Science 292:667–673. https://doi.org/10.1126/science.1059827

    CAS  PubMed  Google Scholar 

  • deMenocal P, Ortiz J, Guilderson T et al (2000) Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat Sci Rev 19:347–361

    Google Scholar 

  • Diamond J (2009) Maya, Khmer and Inca. Nature 461(24):470–480

    Google Scholar 

  • Douglas PMJ, Pagani M, Canuto MA et al (2015) Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands. PNAS 112(8):5607–5612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas PMJ, Demarest AA, Brenner M et al (2016) Impacts of climate change on the collapse of Lowland Maya civilization. Annu Rev Earth Planet Sci 44:613–645

    CAS  Google Scholar 

  • Douglas PMJ, Pagani M, Canuto MA, Brenner M, Hodell DA, Eglinton TI, Curtis JH (2014) Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands. PNAS112(18):5607–5612

    Google Scholar 

  • Dunning NP, Beach T (2000) Stability and instability in prehispanic Maya landscapes. In: Lentz D (ed) An imperfect balance: landscape transformations in the pre-Columbian Americas. Columbia University Press, New York, pp 179–202

    Google Scholar 

  • Dunning NP, Rue D, Beach T et al (1998) Humaneenvironmental interactions in a tropical watershed: the paleoecology of Laguna Tamarindito, El Petén, Guatemala. J Field Archaeol 25:139–151

    Google Scholar 

  • Dunning NP, Beach TP, Luzzadder-Beach S (2012) Kax and kol: collapse and resilience in lowland Maya civilization. PNAS 109:3652–3657. https://doi.org/10.1073/pnas.1114838109

    Article  PubMed  PubMed Central  Google Scholar 

  • Erickson CL (1999) Neo-environmental determinism and agrarian ‘collapse’ in Andean prehistory. Antiquity 73:634–642

    Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Munksgaard, Copenhagen, p 328

    Google Scholar 

  • Gill RB (2008) Las grandes Sequías mayas. Agua, Vida y Muerte. Fondo de Cultura Económica, México. p 561

    Google Scholar 

  • Gregory BRB, Peros M, Reinhardt E et al (2015) Middle-late Holocene Caribbean aridity inferred from foraminifera and elemental data in sediment cores from two Cuban lagoons. Palaeogeogr Palaeoclimatol Palaeoecol 426:229–241

    Google Scholar 

  • Grimm E (2011) Tilia 1.7.16. Illinois State Museum. Research and Collection Center

    Google Scholar 

  • Grube N, Delvendahl K (2016) In the wake of the great. Humanit Soc Sci 38(1):16–22. https://doi.org/10.1002/germ.201690012

    Google Scholar 

  • Grube N, Delvendahl K, Seefeld N et al (2012) Under the rule of the snake kings: Uxul in the 7th and 8th centures. Estudios de la Cultura Maya XL:11–49

    Google Scholar 

  • Gunn J, Folan WJ, Robichaux HR (1995) A landscape analysis of the Candelaria watershed in Mexico: insights into paleoclimates affecting upland horticulture in the southern Yucatan Peninsula Semi-Karst. Geoarchaeology 10:3–42. https://doi.org/10.1002/gea.3340100103

    Article  Google Scholar 

  • Gunn JD, JWJr D, Folan W et al (2019) Geo‑cultural time: advancing human societal complexity within worldwide constraint bottlenecks—a chronological/helical approach to understanding human–planetary interactions. BioPhys Econ Resour Qual 4:10. https://doi.org/10.1007/s41247-019-0058-7

    Article  Google Scholar 

  • Gutiérrez-Ayala LV, Torrescano-Valle N, Islebe GA (2012) Reconstrucción paleoambiental del Holoceno tardío de la reserva Los Petenes, Península de Yucatán, México. Revista Mexicana de Ciencias Geológicas 29(3):749–763

    Google Scholar 

  • Harrison PD (1990) The revolution in ancient Maya subsistence. In: Clancy FS, Harrison PD (eds) Vision and revision in Maya studies. University of New Mexico Press, Albuquerque, pp 99–113

    Google Scholar 

  • Hastenrath S (1984) Interannual variability and annual cycle: mechanisms of circulation and climate in the tropical Atlantic sector. Am Meteorol Soc 112:1097–1107

    Google Scholar 

  • Hodell DA, Curtis JH, Brenner M (1995) Possible role of climatic change in the collapse of the Maya civilization. Nature 375:391–394

    CAS  Google Scholar 

  • Hodell DA, Brenner M, Curtis JH (2000) Climate change in the Northern American tropics and subtropics since the last Ice Age: implications for environment and culture. In: Lentz DL (ed) Imperfect balance. Landscape transformations in the Precolumbian Americas. Columbia University Press, New York, pp 13–38

    Google Scholar 

  • Hodell DA, Brenner M, Curtis JH et al (2001) Frequency in the Maya lowlands. Science 292:1367–1370

    CAS  PubMed  Google Scholar 

  • Hodell DA, Brenner M, Curtis JH (2005) Terminal classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quat Sci Rev 24:1413–1427

    Google Scholar 

  • Hodell DA, Brenner M, Curtis JH (2007) Climate and cultural history of the northeastern Yucatan Peninsula, Quintana Roo, Mexico. Clim Chang 83:215–240

    CAS  Google Scholar 

  • Islebe GA, Hooghiemstra H, Brenner M et al (1996) A Holocene vegetation history from lowland Guatemala. The Holocene 6(3):265–271

    Google Scholar 

  • Johnston KJ (2003) The intensification of pre-industrial cereal agriculture in the tropics: Boserup, cultivation lengthening, and the Classic Maya. J Anthropol Archaeol 22:126–161. https://doi.org/10.1016/S0278-4165(03)00013-8

    Article  Google Scholar 

  • Johnston KJ (2006) La intensificación de la agricultura Maya Clásica. In: Laporte JP, Arroyo B, Mejía H (eds) XIX Simposio de Investigaciones Arqueológicas en Guatemala 2005. Museo Nacional de Arqueología y Etnología, Guatemala, pp 1090–1100

    Google Scholar 

  • Kennett DJ, Breitenbach SFM, Aquino VV et al (2012) Development and disintegration of Maya political systems in response to climate change. Science 338(6108):788–791

    CAS  PubMed  Google Scholar 

  • LaRocque A, Leblon B, Ek J (2019) Detection of potential large Maya settlements in the northern Petén área (State of Campeche, Mexico) using optical and radar remote sensing. J Archaeol Sci 23:80–97

    Google Scholar 

  • Lentz DL, Magee K, Weaver E et al (2015) Agroforestry and agricultural practices of the ancient Maya at Tikal. In: Lentz DL, Dunning NP, Scarborough V (eds) Tikal, paleoecology of an ancient Maya City. Cambridge University Press, Cambridge, pp 152–186

    Google Scholar 

  • Leyden B, Brenner M, Whitmore T et al (1996) A record of long-and short-term climatic variation from Northwest Yucatán: Cenote San José Chulchacá. In: Fedick SL (ed) The managed mosaic: ancient Maya agriculture and resource use. University of Utah Press, Salt Lake City, pp 30–50

    Google Scholar 

  • Leyden BW, Brenner B, Dahlin BH (1998) Cultural and climatic history of Cobá, a lowland Maya city in Quintana Roo, Mexico. Quat Res 49:111–122

    CAS  Google Scholar 

  • Lohse JC (2010) Archaic origins of the Lowland Maya. Lat Am Antiq 21(3):312–352

    Google Scholar 

  • Lozano-García S, Ortega B, Roy PD et al (2015) Climatic variability in the northern sector of the American tropics since the latest MIS 3. Quat Res 84(2):262–271

    Google Scholar 

  • Manzanilla L (1997) The impact of climatic change on past civilizations. A revisionist agenda for futher investigation. Quat Int 43/44:153–159

    Google Scholar 

  • Marín-Stillman LE, Pacheco-Avíla JG, Méndez-Ramos R (2004) Hidrogeología de la peninsula de Yucatán. In: Jímenez B, Marín L (eds) El agua en México vista desde la academia. Academia Mexicana de Ciencias. p 403

    Google Scholar 

  • Matsouka Y, Vigouroux Y, Goodman MM, Sanchez GS, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. PNAS 99(9):6080–6084. https://doi.org/10.1073/pnas.052125199

    Article  CAS  Google Scholar 

  • Mayewski PA, Rohling EE, Curt Stager J et al (2004) Holocene climate variability. Quat Res 62:243–255

    Google Scholar 

  • Medina-Elizalde M, Burns SJ, Polanco-Martínez JM et al (2016) High-resolution speleothem record of precipitation from the Yucatan Peninsula spanning the Maya Preclassic Period. Glob Planet Chang 138:93–102

    Google Scholar 

  • Metcalfe S, Jones MD, Davies SJ et al (2010) Climate variability over the last two millennia in the North American monsoon region, recorded in laminated lake sediments from Laguna Juanacatlán México. The Holocene 20:1195–1206

    Google Scholar 

  • Milne GA, Long AJ, Bassett SE (2005) Modelling Holocene relative sea-level observations from the Caribbean and South America. Quat Sci Rev 24:1183–1202

    Google Scholar 

  • Mueller AD, Islebe GA, Anselmetti FS et al (2010) Recovery of the forest ecosystem in the tropical lowlands of northern Guatemala after disintegration of Classic Maya polities. Geology 38(6):523–526

    Google Scholar 

  • Nakagawa T, Brugiapaglia E, Digerfelti G et al (1998) Dense media separation as a more efficient pollen extraction method for use with organic sediment/deposit samples: comparison with the conventional method. Boreas 27(1):15–24

    Google Scholar 

  • Nooren CAM, Hoek WZ, Tebbens LA et al (2009) Tephrochronological evidence for the late Holocene eruption history of El Chichón Volcano, Mexico. Geofis Int 48(1):97–112

    CAS  Google Scholar 

  • Ojeda-Mas H, Súarez-Aguilar V, Peña-Castillo A (1996) Cilvituk, una economía lacustre: avance de investigación. Investigadores de la cultura Maya. Tomo II. Universidad Autónoma Campeche 450–478

    Google Scholar 

  • OriginLab (2016) © Corporation. All rights reserved. https://www.originlab.com/2016

  • Perez L, Bugja R, Lorenschat J, Brenner M et al (2011) Aquatic ecosystems of the Yucatan Peninsula (Mexico), Belize, and Guatemala. Hydrobiologia 661(1):407–433. https://doi.org/10.1007/s10750-010-0552-9

    Article  CAS  Google Scholar 

  • Pohl MED, Pope KO, Jones JG et al (1996) Early agriculture in the Maya Lowlands. Lat Am Antiq 7(4):355–372

    Google Scholar 

  • Pohl MED, Piperno DR, Pope KO et al (2007) Microfossil evidence for pre-Columbian maize dispersals in the neotropics from San Adnrés, Tabasco, Mexico. PNAS 104(16):6870–6875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenswing RM, Pearsall DM, Masson MA et al (2014) Archaic period settlement and subsistence in the Maya Lowlands: new starch grain and lithic data from Freshwater Creek, Belize. J Archaeol Sci 41:308–321

    Google Scholar 

  • Roy PD, Jonathan MP, Pérez-Cruz LL et al (2012) A millennial-scale Late Pleistocene–Holocene palaeoclimatic record from the western Chihuahua Desert, Mexico. Boreas 41:707–718

    Google Scholar 

  • Roy PD, Quiroz-Jiménez JD, Pérez-Cruz LL et al (2013) Late Quaternary paleohydrológical conditions in the dryland of northern Mexico: a summer precipitation proxy record of the last 80 cal ka BP. Quat Sci Rev 78:342–354

    Google Scholar 

  • Roy PD, Chávez-Lara CM, Beramendi-Orosco LE et al (2015) Pleohydrology of the Santiaguillo Basin (Mexico) since late last glacial and climate variation in southern part of western subtropical North America. Quat Res 84:335–347

    Google Scholar 

  • Roy PD, Rivero-Navarrete A, Sánchez-Zavala JL et al (2016) Atlantic Ocean modulated hydroclimate of the subtropical northeastern Mexico since the Last Glacial Maximum and comparison with the sou-thern US. Earth Planet Sci Lett 434:141–150

    CAS  Google Scholar 

  • Roy PD, Torrescano-Valle N, Islebe GA et al (2017) Late Holocene hydroclimate of the western Yucatan Peninsula (Mexico). J Quat Sci 32(8):1112–1120

    Google Scholar 

  • Roy PD, Torrescano-Valle N, Escarraga-Paredes D et al (2018) Comparision of elemental concentration in near-surface late Holocene sediments and precipitation regimes of the Yucatán Peninsula (Mexico): a preliminary study. Bol Geol Min 129:693–706

    Google Scholar 

  • Rull V (2010) Ecology and Palaecology: two approaches, one objetive. Open Ecol J 3:1–5

    Google Scholar 

  • Scarborough VL and Valdez F (2014) The alternative economy: resilience in the face of complexity from the Eastern Lowlands. Archeological Papers of the American Anthropological Association 24:124–141

    Google Scholar 

  • Shaw JM (2003) Climate change and deforestation: implications for the Maya collapse. Anc Mesoam 14:157–167

    Google Scholar 

  • Siemens AH (1983) Wetland agriculture in pre-hispanic Mesoamerica. Am Geogr Soc 73(2):166–181. http://www.jstor.org/stable/214642

    Google Scholar 

  • Siemens AH (2011) Subidas y Bajadas: Desafíos en la investigación del factor agua en la ecología humana del mundo Maya. Paper read at the XXI Encuentro Internacional: Los Investigadores de la Cultura Maya. Universidad Autonoma de Campeche, Campeche, México

    Google Scholar 

  • Simpson GL (2012) Analogue methods in palaeolimnology. Chapter 15. In Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Springer p 496

    Google Scholar 

  • Sluyter A, Dominguez G (2006) Early maize (Zea mays L.) cultivation in Mexico: dating sedimentary pollen records and its implications. PNAS 103(4):1147–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sosa-Nájera S, Lozano-García S, Roy PD et al (2010) Registro de sequías históricas en el occidente de México con base en el análisis elemental de sedimentos lacustres: El caso del lago de Santa María del Oro. Bol Soc Geol Mex 62(3):437–451

    Google Scholar 

  • Stott PA, Christidis N, Otto FEL et al (2016) Attribution of extreme wather and climate-related events. Clim Chang 7:23–41

    Google Scholar 

  • Torrescano-Valle N, Islebe GA (2015) Holocene paleoecology, climate history and human influence in the southwestern Yucatán peninsula. Rev Palaeobot Palynol 217:1–8

    Google Scholar 

  • Turney CSM, Brown H (2007) Catastrophic early Holocene Sea level rise, human migration and Neolithic transition in Europe. Quat Sci Rev 26:2036–2041

    Google Scholar 

  • Vela-Pelaez AA, Torrescano-Valle N, Islebe GA et al (2018) Holocene precipitation changes in the Maya forest, Yucatán península, Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 505:42–52

    Google Scholar 

  • Wahl D, Byrne R, Schreiner T et al (2006) Holocene vegetation change in the northern Peten and its implications for Maya prehistory. Quat Res 65(3):380–389

    Google Scholar 

  • Wahl D, Byrne R, Schreiner T et al (2007) Palaeolimnological evidence of late-Holocene settlement and abandonment in the Mirador Basin, Peten, Guatemala. The Holocene 17(6):813–820

    Google Scholar 

  • Wahl D, Estrada-Belli F, Anderson L (2013) A 3400 year paleolimnological record of prehispanic human-environment interations in the Holmul región of the southern Maya lowlands. Palaeogeogr Palaeoclimatol Palaeoecol 379-380:17–31

    Google Scholar 

  • Wahl D, Byrne R, Anderson L (2014) An 8700 year paleoclimate reconstruction from the southern Maya lowlands. Quat Sci Rev 103:19

    Google Scholar 

Download references

Acknowledgments

Conacyt is acknowledged for funding of several projects. We appreciate the technical and financial support of Nicolai Grube through UXUL Project. We acknowledge the review of the present chapter to Dr. Joel Gunn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Torrescano-Valle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torrescano-Valle, N., Ramírez-Barajas, P.J., Islebe, G.A., Vela-Pelaez, A.A., Folan, W.J. (2019). Human Influence Versus Natural Climate Variability. In: Torrescano- Valle, N., Islebe, G., Roy, P. (eds) The Holocene and Anthropocene Environmental History of Mexico. Springer, Cham. https://doi.org/10.1007/978-3-030-31719-5_9

Download citation

Publish with us

Policies and ethics