Skip to main content

Thermal Instability Analysis of Station Class Surge Arresters Based on Electrothermal Finite Element Simulation

  • Conference paper
  • First Online:
Proceedings of the 21st International Symposium on High Voltage Engineering (ISH 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 598))

Included in the following conference series:

Abstract

The phenomenon of thermal instability is an important practical problem of station class surge arresters. This effect may occur after single or repetitive energy impulse injections to an arrester connected to the power grid. Thermal stability of full scale arresters cannot be investigated in the laboratory. Finite element simulation provides detailed insight to this complex electrothermally coupled problem. Therefore, an ungraded arrester is modeled including all relevant electrothermal physics. After the model is validated, various thermally stable and unstable scenarios are investigated. A criterion that assesses and predicts thermal instability of an arrester is determined. Furthermore, selected model parameters that increase the thermal stability limit are identified in order to optimize future arrester designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clemens, M., Steinmetz, T., Weida, D., Hinrichsen, V.: Coupled thermal-electroquasistatic 3D field simulation of high-voltage surge arrester structures. In: Computational Electromagnetics Conference (CEM), Aachen, Germany, April 2006

    Google Scholar 

  2. Gießel, M.: Elektrothermisches Verhalten von Hochspannungs–Metalloxid–Ableitern mit reduzierten Steuersystemen in Wechselspannungsnetzen. Dissertation, Technische Universität Darmstadt (2018)

    Google Scholar 

  3. Gießel, M., Hinrichsen, V., Göhler, R., Späck-Leigsnering, Y., Gjonaj, E., De Gersem, H.: Einfluss unterschiedlicher steuerringkonfigurationen auf die thermische stabilität von überspannungsableitern. In: VDE-Fachtagung Hochspannungstechnik 2016, November 2016

    Google Scholar 

  4. Gießel, M., Hinrichsen, V., Göhler, R., Späck-Leigsnering, Y., Gjonaj, E., De Gersem, H.: Electro-thermally coupled finite-element simulations of high voltage station arresters with and without grading, November 2017

    Google Scholar 

  5. Göhler, R., Schubert, M., Weck, K., Hinrichsen, V., Tuczek, M.N., Clemens, M., Appel, R.: Special requirements on surge arrester design for UHV A.C. systems above 800 kV system voltage. In: CIGRÉ Konferenz Report A3-104-2010, Paris, August 2010

    Google Scholar 

  6. Hinrichsen, V.: Metal-Oxide Surge Arresters in High-Voltage Power Systems - Fundamentals, 3rd edn. Siemens AG, Munich (2011)

    Google Scholar 

  7. Hinrichsen, V., Gießel, M., Tuczek, M.: Thermal stability of HV and UHV arresters with reduced grading systems. In: The 2015 INMR World Congress on Insulators, Arresters, Bushings & Cable Accessories, Munich, October 2015

    Google Scholar 

  8. IEC 60099-4: Surge arresters – Part 4: Metal-oxide surge arresters without gaps for a.c. systems. 3 edn. International Electrotechnical Commission (IEC), Geneva, Switzerland, June 2014

    Google Scholar 

  9. Richter, B., Dellallibera, A., Greuter, F., Holzer, M., Ishizaki, Y., Kobayashi, M., Rawi, I.M., Tuczek, M., Woodworth, J., Comber, M., Göhler, R., Hinrichsen, V., Ishibe, S., Johnnerfelt, B., Fan, L., Späck-Leigsnering, Y., Nakajima, M., Österlund, R.: MO surge arresters: metal oxide varistors and surge arresters for emerging system conditions; Technical Broschure 696. Cigré Working Group A3.25 (2017)

    Google Scholar 

  10. Späck-Leigsnering, Y., Gjonaj, E., De Gersem, H.: Electrothermal optimization of field grading systems of station class surge arresters. IEEE J. Multiscale Multiphys. Comput. Tech. 4, 29–36 (2019)

    Article  Google Scholar 

  11. Späck-Leigsnering, Y., Gjonaj, E., De Gersem, H., Weiland, T., Gießel, M., Hinrichsen, V.: Thermal analysis of a station class arrester model in continuous operation and under the operating duty test. In: 19th International Symposium on High Voltage Engineering, August 2015

    Google Scholar 

  12. Späck-Leigsnering, Y., Gjonaj, E., De Gersem, H., Weiland, T., Gießel, M., Hinrichsen, V.: Electroquasistatic-thermal modeling and simulation of station class surge arresters. IEEE Trans. Magn. 52(3), 1–4 (2016)

    Article  Google Scholar 

  13. Späck-Leigsnering, Y., Gjonaj, E., De Gersem, H., Weiland, T., Gießel, M., Hinrichsen, V.: Investigation of thermal stability for a station class surge arrester. IEEE J. Multiscale Multiphys. Comput. Tech. 1, 120–128 (2016)

    Article  Google Scholar 

  14. VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (ed.): VDI Heat Atlas. Springer (2010)

    Google Scholar 

  15. Zheng, Z., Boggs, S.A.: Heat sink effects in thermal stability tests of ZnO arresters. In: Conference on Electrical Insulation and Dielectric Phenomena, Annual Report, pp. 473–477 October 2003

    Google Scholar 

  16. Zheng, Z., Boggs, S.A., Imai, T., Nishiwaki, S.: Computation of arrester thermal stability. IEEE Trans. Power Deliv. 25(3), 1526–1529 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Späck-Leigsnering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Späck-Leigsnering, Y., Ruppert, M.G., Gjonaj, E., De Gersem, H., Hinrichsen, V. (2020). Thermal Instability Analysis of Station Class Surge Arresters Based on Electrothermal Finite Element Simulation. In: Németh, B. (eds) Proceedings of the 21st International Symposium on High Voltage Engineering. ISH 2019. Lecture Notes in Electrical Engineering, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-030-31676-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31676-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31675-4

  • Online ISBN: 978-3-030-31676-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics