Skip to main content

Virtual Adversarial Training on Graph Convolutional Networks in Node Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11857))

Abstract

The effectiveness of Graph Convolutional Networks (GCNs) has been demonstrated in a wide range of graph-based machine learning tasks. However, the update of parameters in GCNs is only from labeled nodes, lacking the utilization of unlabeled data. In this paper, we apply Virtual Adversarial Training (VAT), an adversarial regularization method based on both labeled and unlabeled data, on the supervised loss of GCN to enhance its generalization performance. By imposing virtually adversarial smoothness on the posterior distribution in semi-supervised learning, VAT yields an improvement on the performance of GCNs. In addition, due to the difference of property in features, we perturb virtual adversarial perturbations on sparse and dense features, resulting in GCN Sparse VAT (GCNSVAT) and GCN Dense VAT (GCNDVAT) algorithms, respectively. Extensive experiments verify the effectiveness of our two methods across different training sizes. Our work paves the way towards better understanding the direction of improvement on GCNs in the future.

The first author is a student.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  2. Chen, J., Zhu, J.: Stochastic training of graph convolutional networks. arXiv preprint arXiv:1710.10568 (2017)

  3. Dai, H., Kozareva, Z., Dai, B., Smola, A., Song, L.: Learning steady-states of iterative algorithms over graphs. In: International Conference on Machine Learning, pp. 1114–1122 (2018)

    Google Scholar 

  4. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  5. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  6. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  7. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  9. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. arXiv preprint arXiv:1801.07606 (2018)

  10. Miyato, T., Dai, A.M., Goodfellow, I.: Adversarial training methods for semi-supervised text classification. arXiv preprint arXiv:1605.07725 (2016)

  11. Miyato, T., Maeda, S.I., Ishii, S., Koyama, M.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Google Scholar 

  12. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  13. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93 (2008)

    Article  Google Scholar 

  14. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  15. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 1(2) (2017)

  16. Yu, B., Wu, J., Zhu, Z.: Tangent-normal adversarial regularization for semi-supervised learning. arXiv preprint arXiv:1808.06088 (2018)

  17. Zhu, J., Song, J., Chen, B.: Max-margin nonparametric latent feature models for link prediction. arXiv preprint arXiv:1602.07428 (2016)

  18. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural networks for graph data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2847–2856. ACM (2018)

    Google Scholar 

  19. Zügner, D., Günnemann, S.: Adversarial attacks on graph neural networks via meta learning (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanxing Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, K., Lin, Z., Guo, H., Zhu, Z. (2019). Virtual Adversarial Training on Graph Convolutional Networks in Node Classification. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11857. Springer, Cham. https://doi.org/10.1007/978-3-030-31654-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31654-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31653-2

  • Online ISBN: 978-3-030-31654-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics