Skip to main content

Characterization of Eye Gaze and Pupil Diameter Measurements from Remote and Mobile Eye-Tracking Devices

  • Conference paper
  • First Online:

Part of the book series: IFMBE Proceedings ((IFMBE,volume 76))

Abstract

Eye-tracking technology allows to capture real-time visual behavior information and to provide insights about cognitive processes and autonomic function, by measuring gaze position and pupillary response to delivered stimuli. Over the recent years, the development of easy-to-use devices led to a large increase in the use of eye-tracking in a broad spectrum of applications, e.g. clinical diagnostics and psychological research. Given the lack of extensive material to characterize the performance of different eye-trackers, especially latest generation devices, the present study aimed at comparing a screen-mounted eye-tracker (remote) and a pair of wearable eye-tracking glasses (mobile). Seventeen healthy subjects were asked to look at a moving target on a screen for 90 s, while point of regard (POR) and pupil diameter (PD) were recorded by the two devices with a sampling rate of 30 Hz. First, data were preprocessed to remove artifacts, then correlation coefficients (for both signals) and magnitude-squared coherence (for PD) were calculated to assess signals agreement in time and frequency domain. POR measurements from remote and mobile devices resulted highly comparable (ρ > 0.75). PD showed lower correlation and major dispersion (ρ > 0.50), besides a higher number of invalid samples from the mobile device with respect to the remote one. Results provided evidence that the two instruments do share the same content at the level of information generally used to characterize subjects behavioral and physiological reactions. Future analysis of additional features and devices with higher sampling frequencies will be planned to further support their clinical use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Underwood, G.: Cognitive Processes in Eye Guidance. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  2. Hansen, D., Ji, Q.: In the eye of the beholder: a survey of models for eyes and gaze. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 478–500 (2010)

    Article  Google Scholar 

  3. Eckstein, M.K., Guerra-Carrillo, B., Singley, A.T.M., Bunge, S.A.: Beyond eye gaze: what else can eyetracking reveal about cognition and cognitive development? Dev. Cogn. Neurosci. 25, 69–91 (2017)

    Article  Google Scholar 

  4. Robinson, D.: A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Electron. 10(4), 137–145 (1963)

    Article  Google Scholar 

  5. Marmor, M.F., Zrenner, E.: Standard for clinical electro-oculography. Doc. Ophthalmol. 85(2), 115–124 (1993)

    Article  Google Scholar 

  6. Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., Van de Weijer, J.: Eye Tracking: A Comprehensive Guide to Methods and Measures. Oxford University Press, Oxford (2011)

    Google Scholar 

  7. Mele, M.L., Federici, S.: Gaze and eye-tracking solutions for psychological research. Cogn. Process. 13(1), 261–265 (2012)

    Article  Google Scholar 

  8. Pierce, K., Marinero, S., Hazin, R., McKenna, B., Barnes, C.C., Malige, A.: Eye tracking reveals abnormal visual preference for geometric images as an early biomarker of an autism spectrum disorder subtype associated with increased symptom severity. Biol. Psychiat. 79(8), 657–666 (2016)

    Article  Google Scholar 

  9. Al-Moteri, M.O., Symmons, M., Plummer, V., Cooper, S.: Eye tracking to investigate cue processing in medical decision-making: a scoping review. Comput. Hum. Behav. 66, 52–66 (2017)

    Article  Google Scholar 

  10. Nevalainen, S., Sajaniemi, J.: Comparison of three eye tracking devices in psychology of programming research. PPIG 4, 151–158 (2004)

    Google Scholar 

  11. Mello-Thoms, C.: Head-mounted versus remote eye tracking of radiologists searching for breast cancer: a comparison. Acad. Radiol. 13(2), 203–209 (2006)

    Article  Google Scholar 

  12. Carlson, R.E., Fritsch, F.N.: Monotone piecewise bicubic interpolation. SIAM J. Numer. Anal. 22(2), 386–400 (1985)

    Article  MathSciNet  Google Scholar 

  13. Camm, A., Malik, M., Bigger, J., Breithardt, G., Cerutti, S., Cohen, R., et al.: Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the european society of cardiology and the north american society of pacing and electrophysiology. Circulation 93, 1043–1065 (1996)

    Article  Google Scholar 

  14. Andersson, R., Nyström, M., Holmqvist, K.: Sampling frequency and eye-tracking measures: how speed affects durations, latencies, and more. J. Eye Mov. Res. 3(3), 6 (2010)

    Google Scholar 

  15. Funke, G., Greenlee, E., Carter, M., Dukes, A., Brown, R., Menke, L.: Which eye tracker is right for your research? Performance evaluation of several cost variant eye trackers. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 60, no. 1, pp. 1240–1244. SAGE Publications, Los Angeles (2016)

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge PHEEL (http://pheel.polimi.it/) for the valuable support in both experimental and methodological development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Lolatto .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lolatto, R. et al. (2020). Characterization of Eye Gaze and Pupil Diameter Measurements from Remote and Mobile Eye-Tracking Devices. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31635-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31634-1

  • Online ISBN: 978-3-030-31635-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics