Skip to main content

The Pathogenesis and Aetiology of MIH: More Questions Than Answers

  • Chapter
  • First Online:
Molar Incisor Hypomineralization

Abstract

Demarcated hypomineralized lesions of enamel, pathognomonic of MIH, are caused by the process of amelogenesis being altered or interrupted, most likely during the maturation phase. Increased protein concentrations are present in the lesion, primarily from serum, although some proteins involved in amelogenesis, such as amelogenin, have also been identified. The result of this disruption is enamel with decreased mineral density, decreased hardness and increased porosity and crystalline impurities, making it prone to demineralization and physical breakdown. The cause of enamel defects included in MIH and similar conditions including hypomineralized second primary molars is yet to be determined. Several hypotheses have been proposed, including childhood illness and genetic influences and a putative individual threshold of susceptibility; however, there is still conjecture on what the causative factors are.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alaluusua S. Aetiology of molar-incisor hypomineralisation: a systematic review. Eur Arch Paediatr Dent. 2010;11(2):53–8. https://doi.org/10.1007/bf03262713.

    Article  PubMed  Google Scholar 

  2. Crombie F, Manton D, Kilpatrick N. Aetiology of molar–incisor hypomineralization: a critical review. Int J Paediatr Dent. 2009;19(2):73–83. https://doi.org/10.1111/j.1365-263X.2008.00966.x.

    Article  PubMed  Google Scholar 

  3. Silva MJ, Scurrah KJ, Craig JM, Manton DJ, Kilpatrick N. Etiology of molar incisor hypomineralization - a systematic review. Community Dent Oral Epidemiol. 2016;44(4):342–53. https://doi.org/10.1111/cdoe.12229.

    Article  PubMed  Google Scholar 

  4. Wright JT, Carrion IA, Morris C. The molecular basis of hereditary enamel defects in humans. J Dent Res. 2015;94(1):52–61. https://doi.org/10.1177/0022034514556708.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lacruz R, Habelitz S, Wright J, Paine M. Dental enamel formation and implications for oral health and disease. Physiol Rev. 2017;97(3):939–93. https://doi.org/10.1152/physrev.00030.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bronckers ALJJ. Ion transport by ameloblasts during amelogenesis. J Dent Res. 2017;96(3):243–53. https://doi.org/10.1177/0022034516681768.

  7. Crawford PJM, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis. 2007;2:17–27. https://doi.org/10.1186/1750-1172-2-17.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Crombie FA, Manton DJ, Palamara JEA, Zalizniak I, Cochrane NJ, Reynolds EC. Characterisation of developmentally hypomineralised human enamel. J Dent. 2013;41(7):611–8. https://doi.org/10.1016/j.jdent.2013.05.002.

    Article  PubMed  Google Scholar 

  9. Brookes SJ, Barron MJ, Dixon MJ, Kirkham J. The unfolded protein response in amelogenesis and enamel pathologies. Front Physiol. 2017;8:653. https://doi.org/10.3389/fphys.2017.00653.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Suzuki M, Shin M, Simmer JP, Bartlett JD. Fluoride affects enamel protein content via TGF-β1-mediated KLK4 inhibition. J Dent Res. 2014;93(10):1022–7. https://doi.org/10.1177/0022034514545629.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mangum JE, Crombie FA, Kilpatrick N, Manton DJ, Hubbard MJ. Surface integrity governs the proteome of hypomineralized enamel. J Dent Res. 2010;89(10):1160–5. https://doi.org/10.1177/0022034510375824.

    Article  PubMed  Google Scholar 

  12. Farah RA, Monk BC, Swain MV, Drummond BK. Protein content of molar-incisor hypomineralisation enamel. J Dent. 2010;38(7):591–6. https://doi.org/10.1016/j.jdent.2010.04.012.

    Article  PubMed  Google Scholar 

  13. Pham C-D, Smith CE, Hu Y, JC-C H, Simmer JP, Y-HP C. Endocytosis and enamel formation. Front Physiol. 2017;8:529. https://doi.org/10.3389/fphys.2017.00529.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rácz R, Földes A, Bori E, Zsembery Á, Harada H, Steward MC, et al. No change in bicarbonate transport but tight-junction formation is delayed by fluoride in a novel ameloblast model. Front Physiol. 2017;8:940. https://doi.org/10.3389/fphys.2017.00940.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Couwenhoven RI, Davis C, Snead ML. Mouse ameloblasts do not transcribe the albumin gene. Calcif Tissue Int. 1989;45(6):367–71. https://doi.org/10.1007/bf02556008.

    Article  PubMed  Google Scholar 

  16. Robinson C, Brookes SJ, Kirkham J, Bonass WA, Shore RC. Crystal growth in dental enamel: the role of amelogenins and albumin. Adv Dent Res. 1996;10(2):173–80. https://doi.org/10.1177/08959374960100020901.

    Article  PubMed  Google Scholar 

  17. Robinson C, Kirkham J, Brookes SJ, Shore RC. The role of albumin in developing rodent dental enamel: a possible explanation for white spot hypoplasia. J Dent Res. 1992;71(6):1270–4. https://doi.org/10.1177/00220345920710060101.

    Article  PubMed  Google Scholar 

  18. Robinson C, Shore RC, Kirkham J, Stonehouse NJ. Extracellular processing of enamel matrix proteins and the control of crystal growth. J Biol Buccale. 1990;18(4):355–61.

    PubMed  Google Scholar 

  19. Zhang LW, Cong X, Zhang Y, Wei T, Su YC, Serrão ACA, et al. Interleukin-17 impairs salivary tight junction integrity in Sjögren’s syndrome. J Dent Res. 2016;95(7):784–92. https://doi.org/10.1177/0022034516634647.

    Article  PubMed  Google Scholar 

  20. Zhuang Y, Hu C, Ding G, Zhang Y, Huang S, Jia Z, et al. Albumin impairs renal tubular tight junctions via targeting the NLRP3 inflammasome. Am J Physiol Renal Physiol. 2015;308(9):F1012–F9. https://doi.org/10.1152/ajprenal.00509.2014.

    Article  PubMed  Google Scholar 

  21. Chang C-W, Wang X, Caldwell RB. Serum opens tight junctions and reduces ZO-1 protein in retinal epithelial cells. J Neurochem. 1997;69(2):859–67. https://doi.org/10.1046/j.1471-4159.1997.69020859.x.

    Article  PubMed  Google Scholar 

  22. Vieira AR, Kup E. On the etiology of molar-incisor hypomineralization. Caries Res. 2016;50(2):166–9. https://doi.org/10.1159/000445128.

    Article  PubMed  Google Scholar 

  23. Vieira AR. On the genetics contribution to molar incisor hypomineralization. Int J Paediatr Dent. 2019;29(1):2–3. https://doi.org/10.1111/ipd.12439.

    Article  PubMed  Google Scholar 

  24. Wray NVP. Estimating trait heritability. Nat Educ. 2008;1:29.

    Google Scholar 

  25. Teixeira R, Andrade NS, Queiroz LCC, Mendes FM, Moura MS, Moura L, et al. Exploring the association between genetic and environmental factors and molar incisor hypomineralization: evidence from a twin study. Int J Paediatr Dent. 2018;28(2):198–206. https://doi.org/10.1111/ipd.12327.

    Article  PubMed  Google Scholar 

  26. Silva MJ, Kilpatrick NM, Craig JM, Manton DJ, Leong P, Burgner D, et al. Etiology of hypomineralized second primary molars: a prospective twin study. J Dent Res. 2019;98(1):77–83. https://doi.org/10.1177/0022034518792870.

    Article  Google Scholar 

  27. Kuhnisch J, Thiering E, Heitmuller D, Tiesler CMT, Grallert H, Heinrich-Weltzien R, et al. Genome-wide association study (GWAS) for molar-incisor hypomineralization (MIH). Clin Oral Investig. 2014;18(2):677–82. https://doi.org/10.1007/s00784-013-1054-8.

    Article  PubMed  Google Scholar 

  28. Jeremias F, Koruyucu M, Kuchler EC, Bayram M, Tuna EB, Deeley K, et al. Genes expressed in dental enamel development are associated with molar-incisor hypomineralization. Arch Oral Biol. 2013;58(10):1434–42. https://doi.org/10.1016/j.archoralbio.2013.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jeremias F, Pierri RAG, Souza JF, Fragelli CMB, Restrepo M, Finoti LS, et al. Family-based genetic association for molar-incisor hypomineralization. Caries Res. 2016;50(3):310–8. https://doi.org/10.1159/000445726.

    Article  PubMed  Google Scholar 

  30. Bussaneli DG, Restrepo M, Fragelli CMB, Santos-Pinto L, Jeremias F, Cordeiro RCL, et al. Genes regulating immune response and amelogenesis interact in increasing the susceptibility to molar-incisor hypomineralization. Caries Res. 2019;53(2):217–27. https://doi.org/10.1159/000491644.

    Article  Google Scholar 

  31. Kobayashi-Kinoshita S, Yamakoshi Y, Onuma K, Yamamoto R, Asada Y. TGF-β1 autocrine signalling and enamel matrix components. Sci Rep. 2016;6:33644. https://doi.org/10.1038/srep33644. https://www.nature.com/articles/srep33644#supplementary-information.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Frascino S, Frascino A, Rezende KM, Imparato JC, Pignatari S. Molar-incisor enamel hypomineralization cross-sectional prevalence evaluation in oral-breathing allergic children. Clin Lab Res Dent. 2017:1–6. https://doi.org/10.11606/issn.2357-8041.clrd.2017.134317.

  33. Barros SP, Offenbacher S. Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res. 2009;88(5):400–8. https://doi.org/10.1177/0022034509335868.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Townsend G, Richards L, Hughes T, Pinkerton S, Schwerdt W. Epigenetic influences may explain dental differences in monozygotic twin pairs. Aust Dent J. 2005;50(2):95–100. https://doi.org/10.1111/j.1834-7819.2005.tb00347.x.

    Article  PubMed  Google Scholar 

  35. Wang J, Sun K, Shen Y, Xu Y, Xie J, Huang R, et al. DNA methylation is critical for tooth agenesis: implications for sporadic non-syndromic anodontia and hypodontia. Sci Rep. 2016;6:19162. https://doi.org/10.1038/srep19162.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Vieira AR, Manton DJ. On the variable clinical presentation of molar-incisor hypomineralization. Caries Res. 2019;53(4):482–8, accepted for publication.

    Article  Google Scholar 

  37. Alaluusua S, Lukinmaa P-L, Koskimies M, Pirinen S, Hölttä P, Kallio M, et al. Developmental dental defects associated with long breast feeding. Eur J Oral Sci. 1996;104(5–6):493–7. https://doi.org/10.1111/j.1600-0722.1996.tb00131.x.

    Article  PubMed  Google Scholar 

  38. Alaluusua S, Calderara P, Gerthoux Pier M, Lukinmaa P-L, Kovero O, Needham L, et al. Developmental dental aberrations after the dioxin accident in seveso. Environ Health Perspect. 2004;112(13):1313–8. https://doi.org/10.1289/ehp.6920.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wuollet E, Laisi S, Salmela E, Ess A, Alaluusua S. Background factors of molar-incisor hypomineralization in a group of Finnish children. Acta Odontol Scand. 2014;72(8):963–9. https://doi.org/10.3109/00016357.2014.931459.

    Article  PubMed  Google Scholar 

  40. Ngoc VTN, Huong LT, Van Nhon B, Tan NTM, Van Thuc P, Hien VTT, et al. The higher prevalence of developmental defects of enamel in the dioxin-affected region than non-dioxin-affected region: result from a cross-sectional study in Vietnam. Odontology. 2019;107(1):17–22. https://doi.org/10.1007/s10266-018-0358-1.

    Article  PubMed  Google Scholar 

  41. Jedeon K, De la Dure-Molla M, Brookes SJ, Loiodice S, Marciano C, Kirkham J, et al. Enamel defects reflect perinatal exposure to bisphenol a. Am J Pathol. 2013;183(1):108–18. https://doi.org/10.1016/j.ajpath.2013.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jedeon K, Houari S, Loiodice S, Thuy TT, Le Normand M, Berdal A, et al. Chronic exposure to bisphenol a exacerbates dental fluorosis in growing rats. J Bone Miner Res. 2016;31(11):1955–66. https://doi.org/10.1002/jbmr.2879.

    Article  PubMed  Google Scholar 

  43. Jedeon K, Marciano C, Loiodice S, Boudalia S, Lavier MCC, Berdal A, et al. Enamel hypomineralization due to endocrine disruptors. Connect Tissue Res. 2014;55:43–7. https://doi.org/10.3109/03008207.2014.923857.

    Article  PubMed  Google Scholar 

  44. Jedeon K, Berdal A, Babajko S. Impact of three endocrine disruptors, Bisphenol a, Genistein and Vinclozolin on female rat enamel. Bull Group Int Rech Sci Stomatol Odontol. 2016;53(1):28–32.

    Google Scholar 

  45. Küchler EC, Dea Bruzamolin C, Ayumi Omori M, Costa MC, Antunes LS, Pecharki GD, et al. Polymorphisms in nonamelogenin enamel matrix genes are associated with dental fluorosis. Caries Res. 2018;52(1–2):1–6. https://doi.org/10.1159/000479826.

    Article  PubMed  Google Scholar 

  46. Wu X, Wang J, Li Y-h, Z-y Y, Zhou Z. Association of molar incisor hypomineralization with premature birth or low birth weight: systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2018:1–9. https://doi.org/10.1080/14767058.2018.1527310.

  47. Garot E, Manton D, Rouas P. Peripartum events and molar-incisor hypomineralisation (MIH) amongst young patients in Southwest France. Eur Arch Paediatr Dent. 2016;17(4):245–50. https://doi.org/10.1007/s40368-016-0235-y.

    Article  PubMed  Google Scholar 

  48. Pinto GS, Costa FS, Machado TV, Hartwig A, Pinheiro RT, Goettems ML, et al. Early-life events and developmental defects of enamel in the primary dentition. Community Dent Oral Epidemiol. 2018;46(5):511–7. https://doi.org/10.1111/cdoe.12408.

    Article  PubMed  Google Scholar 

  49. Sidaly R, Schmalfuss A, Skaare AB, Sehic A, Stiris T, Espelid I. Five-minute Apgar score <= 5 and molar incisor Hypomineralisation (MIH) - a case control study. BMC Oral Health. 2016;17:7. https://doi.org/10.1186/s12903-016-0253-5.

    Article  Google Scholar 

  50. Sheldon M, Bibby BG, Bales MS. The relationship between microscopic enamel defects and infantile debilities. J Dent Res. 1945;24(2):109–16. https://doi.org/10.1177/00220345450240020201.

    Article  Google Scholar 

  51. Kuhnisch J, Thiering E, Kratzsch J, Heinrich-Weltzien R, Hickel R, Heinrich J, et al. Elevated serum 25(OH)-vitamin D levels are negatively correlated with molar-incisor hypomineralization. J Dent Res. 2015;94(2):381–7. https://doi.org/10.1177/0022034514561657.

    Article  PubMed  PubMed Central  Google Scholar 

  52. van der Tas JT, Elfrink MEC, Heijboer AC, Rivadeneira F, Jaddoe VWV, Tiemeier H, et al. Foetal, neonatal and child vitamin D status and enamel hypomineralization. Community Dentist Oral Epidemiol. 2018;46(4):343–51. https://doi.org/10.1111/cdoe.12372.

    Article  Google Scholar 

  53. Nørrisgaard PE, Haubek D, Kühnisch J, et al. Association of high-dose vitamin D supplementation during pregnancy with the risk of enamel defects in offspring: a 6-year follow-up of a randomized clinical trial. JAMA Pediatr. 2019;73(10):924–30. https://doi.org/10.1001/jamapediatrics.2019.2545.

  54. Jälevik B. Prevalence and diagnosis of molar-incisor-hypomineralisation (MIH): a systematic review. Eur Arch Paediatr Dent. 2010;11(2):59–64. https://doi.org/10.1007/bf03262714.

    Article  PubMed  Google Scholar 

  55. Serna C, Vicente A, Finke C, Ortiz AJ. Drugs related to the etiology of molar incisor hypomineralization a systematic review. J Am Dent Assoc. 2016;147(2):120–30. https://doi.org/10.1016/j.adaj.2015.08.011.

    Article  PubMed  Google Scholar 

  56. Kuscu OO, Sandalli N, Dikmen S, Ersoy O, Tatar I, Turkmen I, et al. Association of amoxicillin use and molar incisor hypomineralization in piglets: visual and mineral density evaluation. Arch Oral Biol. 2013;58(10):1422–33. https://doi.org/10.1016/j.archoralbio.2013.04.012.

    Article  PubMed  Google Scholar 

  57. Laisi S, Ess A, Sahlberg C, Arvio P, Lukinmaa PL, Alaluusua S. Amoxicillin may cause molar incisor hypomineralization. J Dent Res. 2009;88(2):132–6. https://doi.org/10.1177/0022034508328334.

    Article  PubMed  Google Scholar 

  58. Wuollet E, Laisi S, Salmela E, Ess A, Alaluusua S. Molar–incisor hypomineralization and the association with childhood illnesses and antibiotics in a group of Finnish children. Acta Odontol Scand. 2016;74(5):416–22. https://doi.org/10.3109/00016357.2016.1172342.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Manton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manton, D.J., Crombie, F.A., Silva, M.J. (2020). The Pathogenesis and Aetiology of MIH: More Questions Than Answers. In: Bekes, K. (eds) Molar Incisor Hypomineralization. Springer, Cham. https://doi.org/10.1007/978-3-030-31601-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31601-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31600-6

  • Online ISBN: 978-3-030-31601-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics