Skip to main content

Direct Detection of Sub-GeV Dark Matter: Models and Constraints

  • Conference paper
  • First Online:
  • 776 Accesses

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 56))

Abstract

I will make some general comments about the search for dark matter and other new particles, contrasting current research trends with those 10 years ago. I will then focus on recent ideas for direct detection experiments to search for dark matter with masses in the MeV-to-GeV range. I will then discuss briefly three topics: (i) the solar neutrino background (or “how low in cross section (interaction strength) can future direct-detection experiments probe before solar neutrinos become an irreducible background”), (ii) novel constraints on low-mass dark matter from Supernova 1987A, and (iii) strongly interacting dark matter (or “how large in cross section can direct-detection experiments probe before terrestrial effects stop sub-GeV dark matter from reaching the detector”).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The discovery at the LHC of the Higgs boson is a notable success, and while the current lack of evidence for other particles at the Weak scale has sharpened the hierarchy problem, the Higgs boson currently conforms to the Standard Model expectations.

References

  1. Fundamental Physics at the Intensity Frontier. https://doi.org/10.2172/1042577, http://inspirehep.net/record/1114323/files/arXiv:1205.2671.pdf

  2. R. Essig, et al., in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, July 29-August 6, 2013 (2013). http://inspirehep.net/record/1263039/files/arXiv:1311.0029.pdf

  3. J. Alexander, et al., (2016). http://inspirehep.net/record/1484628/files/arXiv:1608.08632.pdf

  4. M. Battaglieri, et al. (2017)

    Google Scholar 

  5. G. Angloher et al., Eur. Phys. J. C 77(9), 637 (2017). https://doi.org/10.1140/epjc/s10052-017-5223-9

    Article  ADS  Google Scholar 

  6. R. Essig, J. Mardon, T. Volansky, Phys. Rev. D 85, 076007 (2012). https://doi.org/10.1103/PhysRevD.85.076007

    Article  ADS  Google Scholar 

  7. R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, T. Volansky, Phys. Rev. Lett. 109, 021301 (2012). https://doi.org/10.1103/PhysRevLett.109.021301

    Article  ADS  Google Scholar 

  8. J. Angle et al., Phys. Rev. Lett. 107, 051301 (2011). https://doi.org/10.1103/PhysRevLett.110.249901, https://doi.org/10.1103/PhysRevLett.107.051301. [Erratum: Phys. Rev. Lett. 110, 249901 (2013)]

  9. E. Aprile et al., Phys. Rev. D 94(9), 092001 (2016). https://doi.org/10.1103/PhysRevD.94.092001, https://doi.org/10.1103/PhysRevD.95.059901. [Erratum: Phys. Rev. D 95(5), 059901 (2017)]

  10. P. Agnes, et al., Constraints on sub-GeV dark-matter–electron scattering from the darkSide-50 experiment. Phys. Rev. Lett. 121(11), 111303 (2018). https://doi.org/10.1103/PhysRevLett.121.111303

  11. A. Bernstein, R. Essig, M. Fernandez-Serra, A. Kopec, R. Lang, J. Long, K. Ni, P. Sorensen, J. Xu, LBECA: Low background electron counting apparatus (Unpublished)

    Google Scholar 

  12. J. Tiffenberg, M. Sofo-Haro, A. Drlica-Wagner, R. Essig, Y. Guardincerri, S. Holland, T. Volansky, T.T. Yu, Phys. Rev. Lett. 119(13), 131802 (2017). https://doi.org/10.1103/PhysRevLett.119.131802

  13. M. Crisler, R. Essig, J. Estrada, G. Fernandez, J. Tiffenberg, M. Sofo haro, T. Volansky, T.T. Yu, SENSEI: First direct-detection constraints on sub-GeV dark matter from a surface run. Phys. Rev. Lett. 121(6), 061803 (2018). https://doi.org/10.1103/PhysRevLett.121.061803

  14. R.K. Romani et al., Appl. Phys. Lett. 112, 043501 (2018). https://doi.org/10.1063/1.5010699

    Article  ADS  Google Scholar 

  15. R. Agnese et al., First dark matter constraints from a super CDMS single-charge sensitive detector. Phys. Rev. Lett. 121(5), 051301 (2018). https://doi.org/10.1103/PhysRevLett.122.069901, https://doi.org/10.1103/PhysRevLett.121.051301. [Erratum: Phys. Rev. Lett. 122(6), 069901 (2019)]

  16. R. Essig, M. Sholapurkar, T.T. Yu, Phys. Rev. D 97(9), 095029 (2018). https://doi.org/10.1103/PhysRevD.97.095029

    Article  ADS  Google Scholar 

  17. R. Essig, T. Volansky, T.T. Yu, Phys. Rev. D 96(4), 043017 (2017). https://doi.org/10.1103/PhysRevD.96.043017

    Article  ADS  Google Scholar 

  18. J. Billard, L. Strigari, E. Figueroa-Feliciano, Phys. Rev. D 89(2), 023524 (2014). https://doi.org/10.1103/PhysRevD.89.023524

    Article  ADS  Google Scholar 

  19. J.H. Chang, R. Essig, S.D. McDermott, Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle. JHEP 09, 051 (2018). https://doi.org/10.1007/JHEP09(2018)051

  20. G.G. Raffelt, Stars as Laboratories for Fundamental Physics (1996). http://wwwth.mpp.mpg.de/members/raffelt/mypapers/199613.pdf

  21. R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky, T.T. Yu, JHEP 05, 046 (2016). https://doi.org/10.1007/JHEP05(2016)046

    Article  ADS  Google Scholar 

  22. H. Vogel, J. Redondo, JCAP 1402, 029 (2014). https://doi.org/10.1088/1475-7516/2014/02/029

    Article  ADS  Google Scholar 

  23. A.A. Prinz et al., Phys. Rev. Lett. 81, 1175 (1998). https://doi.org/10.1103/PhysRevLett.81.1175

    Article  ADS  Google Scholar 

  24. S.D. McDermott, H.B. Yu, K.M. Zurek, Phys. Rev. D 83, 063509 (2011). https://doi.org/10.1103/PhysRevD.83.063509

    Article  ADS  Google Scholar 

  25. S. Davidson, S. Hannestad, G. Raffelt, JHEP 05, 003 (2000). https://doi.org/10.1088/1126-6708/2000/05/003

    Article  ADS  Google Scholar 

  26. T. Emken, R. Essig, C. Kouvaris, M. Sholapurkar, Direct detection of strongly interacting sub-GeV dark matter via electron recoils. JCAP 1909(09), 070 (2019). https://doi.org/10.1088/1475-7516/2019/09/070

    Article  Google Scholar 

  27. T. Emken, C. Kouvaris, I.M. Shoemaker, Phys. Rev. D 96(1), 015018 (2017). https://doi.org/10.1103/PhysRevD.96.015018

    Article  ADS  Google Scholar 

  28. T. Emken, C. Kouvaris, JCAP 1710(10), 031 (2017). https://doi.org/10.1088/1475-7516/2017/10/031

    Article  ADS  Google Scholar 

  29. B.J. Kavanagh, R. Catena, C. Kouvaris, JCAP 1701(01), 012 (2017). https://doi.org/10.1088/1475-7516/2017/01/012

    Article  ADS  Google Scholar 

  30. J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen, N. Mahesh, Nature 555(7694), 67 (2018). https://doi.org/10.1038/nature25792

    Article  ADS  Google Scholar 

  31. R. Barkana, N.J. Outmezguine, D. Redigolo, T. Volansky, Strong constraints on light dark matter interpretation of the EDGES signal. Phys. Rev. D98(10), 103005 (2018). https://doi.org/10.1103/PhysRevD.98.103005

  32. A. Falkowski, K. Petraki, 21cm Absorption Signal From Charge Sequestration (2018)

    Google Scholar 

Download references

Acknowledgements

I would like to thank the Simons Foundation for their generous support of this symposium. I would also like to thank my collaborators on the projects discussed in this proceeding, Jae Hyeok Chang, Timon Emken, Chris Kouvaris, Sam McDermott, Mukul Sholapurkar, and Tien-Tien Yu. My research is currently supported by the DoE under Grant Nos. DE-SC0017938 and DE-SC0018952, the Heising-Simons Foundation under Grant No. 79921, and the US-Israel BSF under Grant No. 2016153.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouven Essig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Essig, R. (2019). Direct Detection of Sub-GeV Dark Matter: Models and Constraints. In: Essig, R., Feng, J., Zurek, K. (eds) Illuminating Dark Matter. Astrophysics and Space Science Proceedings, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-31593-1_7

Download citation

Publish with us

Policies and ethics