Skip to main content

Indirect Probes of Light Dark Matter

  • Conference paper
  • First Online:
Illuminating Dark Matter

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 56))

  • 695 Accesses

Abstract

So far, dark matter has only been discovered gravitationally, while its particle identity remains unknown. It is possible that dark matter is so weakly coupled to the visible sector that a direct nongravitational interaction lies well beyond our experimental reach. It is then interesting to ask to what extent indirect probes of dark matter can point to a specific particle physics description. In this note, we discuss two such examples: The first is via 21 cm cosmology and the second is via the study of AGN and black hole growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.N. Spergel, P.J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000). https://doi.org/10.1103/PhysRevLett.84.3760

    Article  ADS  Google Scholar 

  2. S. Tulin, H.B. Yu, K.M. Zurek, Phys. Rev. D 87, 115007 (2013). https://doi.org/10.1103/PhysRevD.87.115007

  3. M. Kaplinghat, S. Tulin, H.B. Yu, Phys. Rev. Lett. 116(4), 041302 (2016). https://doi.org/10.1103/PhysRevLett.116.041302

  4. R. Barkana, N.J. Outmezguine, D. Redigolo, T. Volansky, Phys. Rev. D 98, 103005 (2018). https://doi.org/10.1103/PhysRevD.98.103005

  5. J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen, N. Mahesh, Nature 555(7694), 67 (2018). https://doi.org/10.1038/nature25792. URL http://www.nature.com/doifinder/10.1038/nature25792

    Article  ADS  Google Scholar 

  6. N.J. Outmazgine, O. Slone, W. Tangarife, L. Ubaldi, T. Volansky, JHEP 1811, 005 (2018). https://doi.org/10.1007/JHEP11(2018)005

  7. P. Madau, A. Meiksin, M.J. Rees, Astrophys. J. 475, 429 (1997). https://doi.org/10.1086/303549

    Article  ADS  Google Scholar 

  8. H. Tashiro, K. Kadota, J. Silk, Phys. Rev. D 90(8), 083522 (2014). https://doi.org/10.1103/PhysRevD.90.083522

    Article  ADS  Google Scholar 

  9. J.B. Muñoz, E.D. Kovetz, Y. Ali-Haïmoud, Phys. Rev. D 92(8), 083528 (2015). https://doi.org/10.1103/PhysRevD.92.083528

    Article  ADS  Google Scholar 

  10. H. Netzer, The Physics and Evolution of Active Galactic Nuclei (2013)

    Google Scholar 

  11. D.M. Alexander, R.C. Hickox, New Astron. Rev. 56, 93 (2012). https://doi.org/10.1016/j.newar.2011.11.003

    Article  ADS  Google Scholar 

  12. M.A. Latif, A. Ferrara, Publ. Astron. Soc. Austral. 33, e051 (2016). https://doi.org/10.1017/pasa.2016.41

    Article  ADS  Google Scholar 

  13. S.L. Shapiro, Astrophys. J. 620, 59 (2005). https://doi.org/10.1086/427065

    Article  ADS  Google Scholar 

  14. E.E. Salpeter, Astrophys. J. 140, 796 (1964). https://doi.org/10.1086/147973

    Article  ADS  Google Scholar 

  15. B. Trakhtenbrot, H. Netzer, P. Lira, O. Shemmer, Astrophys. J. 730, 7 (2011). https://doi.org/10.1088/0004-637X/730/1/7

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank the organizers of this symposium and the Simon’s foundation for producing this unique meeting. I would also like to thank my collaborators on these projects: Rennan Barkana, Nadav Outmezguine, Oren Slone, Diego Redigolo, Walter Tangarife, and Lorenzo Ubaldi. This work is supported in part by the I-CORE Program of the Planning Budgeting Committee and the Israel Science Foundation (grant No. 1937/12), by the Israel Science Foundation-NSFC (grant No. 2522/17), by the German-Israeli Foundation (grant No. I-1283-303.7/2014), by the Binational Science Foundation (grant No. 2016153) and by a grant from the Ambrose Monell Foundation, given by the Institute for Advanced Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomer Volansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Volansky, T. (2019). Indirect Probes of Light Dark Matter. In: Essig, R., Feng, J., Zurek, K. (eds) Illuminating Dark Matter. Astrophysics and Space Science Proceedings, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-31593-1_19

Download citation

Publish with us

Policies and ethics