Skip to main content

Primordial Black Holes as Dark Matter: New Formation Scenarios and Astrophysical Effects

  • Conference paper
  • First Online:
Illuminating Dark Matter

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 56))

  • 718 Accesses

Abstract

Scalar field instability can lead to a short matter dominated era, during which the matter is represented by large lumps of the scalar field, whose distribution exhibits large fluctuations, leading to copious production of primordial black holes (PBH). The PBH abundance can be sufficient to explain up to 100% of dark matter without violating observational constraints. Small PBH can destabilize neutron stars and contribute to r-process nucleosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.B. Zel’dovich, I.D. Novikov, Sov. Astron. 10, 602 (1967)

    ADS  Google Scholar 

  2. S. Hawking, Mon. Not. Roy. Astron. Soc. 152, 75 (1971)

    Article  ADS  Google Scholar 

  3. B.J. Carr, S.W. Hawking, Mon. Not. Roy. Astron. Soc. 168, 399 (1974)

    Article  ADS  Google Scholar 

  4. J. Garcia-Bellido, A.D. Linde, D. Wands, Phys. Rev. D 54, 6040 (1996). https://doi.org/10.1103/PhysRevD.54.6040

    Article  ADS  Google Scholar 

  5. P.H. Frampton, M. Kawasaki, F. Takahashi, T.T. Yanagida, JCAP 1004, 023 (2010). https://doi.org/10.1088/1475-7516/2010/04/023

    Article  ADS  Google Scholar 

  6. K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada, T.T. Yanagida (2016)

    Google Scholar 

  7. R. Bean, J. Magueijo, Phys. Rev. D 66, 063505 (2002). https://doi.org/10.1103/PhysRevD.66.063505

    Article  ADS  Google Scholar 

  8. M. Kawasaki, A. Kusenko, T.T. Yanagida, Phys. Lett. B 711, 1 (2012). https://doi.org/10.1016/j.physletb.2012.03.056

    Article  ADS  Google Scholar 

  9. S. Clesse, J. García-Bellido, Phys. Rev. D 92(2), 023524 (2015). https://doi.org/10.1103/PhysRevD.92.023524

    Article  ADS  Google Scholar 

  10. A.D. Dolgov, Usp. Fiz. Nauk 188(2), 121 (2018).https://doi.org/10.3367/UFNe.2017.06.038153. [Phys. Usp.61,no.2,115(2018)]

    Article  ADS  Google Scholar 

  11. S. Clesse, J. García-Bellido, Phys. Dark Univ. 15, 142 (2017). https://doi.org/10.1016/j.dark.2016.10.002

    Article  Google Scholar 

  12. S. Bird, I. Cholis, J.B. Muñoz, Y. Ali-Haïmoud, M. Kamionkowski, E.D. Kovetz, A. Raccanelli, A.G. Riess, Phys. Rev. Lett. 116(20), 201301 (2016). https://doi.org/10.1103/PhysRevLett.116.201301

    Article  ADS  Google Scholar 

  13. M. Sasaki, T. Suyama, T. Tanaka, S. Yokoyama, Phys. Rev. Lett.117(6), 061101 (2016).https://doi.org/10.1103/PhysRevLett.121.059901, https://doi.org/10.1103/PhysRevLett.117.061101. [Erratum: Phys. Rev. Lett.121,no.5,059901(2018)]

  14. J. Georg, S. Watson, JHEP 09, 138 (2017). https://doi.org/10.1007/JHEP09(2017)138.[JHEP09,138(2017)]

    Article  ADS  Google Scholar 

  15. MYu. Khlopov, Res. Astron. Astrophys. 10, 495 (2010). https://doi.org/10.1088/1674-4527/10/6/001

    Article  ADS  Google Scholar 

  16. B. Carr, T. Tenkanen, V. Vaskonen, Phys. Rev. D 96(6), 063507 (2017). https://doi.org/10.1103/PhysRevD.96.063507

    Article  ADS  Google Scholar 

  17. A. Kusenko, M.E. Shaposhnikov, Phys. Lett. B 418, 46 (1998). https://doi.org/10.1016/S0370-2693(97)01375-0

    Article  ADS  Google Scholar 

  18. T.S. Bunch, P.C.W. Davies, Proc. Roy. Soc. Lond. A360, 117 (1978). https://doi.org/10.1098/rspa.1978.0060

    Article  ADS  Google Scholar 

  19. A.D. Linde, Phys. Lett. B 116, 335 (1982). https://doi.org/10.1016/0370-2693(82)90293-3

    Article  ADS  Google Scholar 

  20. A.A. Starobinsky, J. Yokoyama, Phys. Rev. D 50, 6357 (1994). https://doi.org/10.1103/PhysRevD.50.6357

    Article  ADS  Google Scholar 

  21. M. Dine, A. Kusenko, Rev. Mod. Phys. 76, 1 (2003). https://doi.org/10.1103/RevModPhys.76.1

    Article  ADS  Google Scholar 

  22. E. Cotner, A. Kusenko (2016)

    Google Scholar 

  23. E. Cotner, A. Kusenko, Phys. Rev. D 96(10), 103002 (2017). https://doi.org/10.1103/PhysRevD.96.103002

    Article  ADS  Google Scholar 

  24. F. Hasegawa, M. Kawasaki (2018)

    Google Scholar 

  25. A.G. Polnarev, M. Yu. Khlopov, Sov. Phys. Usp. 28, 213 (1985).https://doi.org/10.1070/PU1985v028n03ABEH003858. [Usp.Fiz.Nauk145,369(1985)]

    Article  ADS  Google Scholar 

  26. E. Cotner, A. Kusenko, V. Takhistov (2018)

    Google Scholar 

  27. G.M. Fuller, A. Kusenko, V. Takhistov, Phys. Rev. Lett. 119(6), 061101 (2017). https://doi.org/10.1103/PhysRevLett.119.061101

    Article  ADS  Google Scholar 

  28. C. Kouvaris, P. Tinyakov, Phys. Rev. D 90(4), 043512 (2014). https://doi.org/10.1103/PhysRevD.90.043512

    Article  ADS  Google Scholar 

  29. A.P. Ji, A. Frebel, A. Chiti, J.D. Simon, Nature 531, 610 (2016). https://doi.org/10.1038/nature17425

    Article  ADS  Google Scholar 

  30. V. Takhistov, Phys. Lett. B 782, 77 (2018). https://doi.org/10.1016/j.physletb.2018.05.026

    Article  ADS  Google Scholar 

  31. R. Takahashi, T. Nakamura, Astrophys. J. 595, 1039 (2003). https://doi.org/10.1086/377430

    Article  ADS  Google Scholar 

  32. N. Matsunaga, K. Yamamoto, JCAP 0601, 023 (2006). https://doi.org/10.1088/1475-7516/2006/01/023

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank the Simons Foundation for support and hospitality of the Simons Symposium, which stimulated many new ideas, including a new project that K. Abazajian and I have started at Schloss Elmau. This work was supported by the U.S. Department of Energy Grant No. DE - SC0009937 as well as World Premier International (WPI) Initiative, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kusenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kusenko, A. (2019). Primordial Black Holes as Dark Matter: New Formation Scenarios and Astrophysical Effects. In: Essig, R., Feng, J., Zurek, K. (eds) Illuminating Dark Matter. Astrophysics and Space Science Proceedings, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-31593-1_11

Download citation

Publish with us

Policies and ethics