Skip to main content

Characterize and Dichotomize a Continuous Biomarker

  • Chapter
  • First Online:
Statistical Methods in Biomarker and Early Clinical Development
  • 925 Accesses

Abstract

Dichotomization of continuous biomarkers is both clinically relevant and desirable since clinical decisions are usually based on categorization of patients into groups (i.e., stratification or subgroup identification for tailoring). However, such categorization may result in significant loss of information. It is important that the analytical method evaluates and incorporates the continuum of biomarker values to guide the optimization of a clinically appropriate cutpoint.

This chapter starts with an Sect. 1 that provides the key clinical objectives, motivating real-world examples and challenges in dichotomizing a continuous biomarker. A summary of current methods will be provided in the Sect. 2, including optimal cutpoint selection and continuum-assessment approaches. The methods discussed in this chapter not only include inferential-based approaches for dichotomizing a continuous biomarker, but also visualization methods that characterize the relationship between a continuous-scale biomarker and the clinical outcome. We also briefly discuss the use of biomarker signature as an extension to the single marker scenario. Finally, best practice and method extensions will be discussed in the Sect. 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

[Translational Research]

  • Park JY, Kricka LJ, Fortina P. Next-generation sequencing in the clinic. Nature biotechnology. 2013 Nov 1;31(11):990–2.

    Article  Google Scholar 

  • McShane LM, Cavenagh MM, Lively TG, Eberhard DA, Bigbee WL, Williams PM, Mesirov JP, Polley MY, Kim KY, Tricoli JV, Taylor JM. Criteria for the use of omics-based predictors in clinical trials. Nature. 2013 Oct 17;502(7471):317–20.

    Article  Google Scholar 

  • Vivot A, Boutron I, Béraud-Chaulet G, Zeitoun JD, Ravaud P, Porcher R. Evidence for Treatment-by-Biomarker interaction for FDA-approved Oncology Drugs with Required Pharmacogenomic Biomarker Testing. Scientific reports. 2017 Jul 31;7(1):6882.

    Article  Google Scholar 

  • Teutsch SM, Bradley LA, Palomaki GE, Haddow JE, Piper M, Calonge N, Dotson WD, Douglas MP, Berg AO. The evaluation of genomic applications in practice and prevention (EGAPP) initiative: methods of the EGAPP working group. Genetics in medicine. 2009 Jan 1;11(1):3–14.

    Article  Google Scholar 

  • Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, Ou SH, Pérol M, Dziadziuszko R, Rosell R, Zeaiter A. Alectinib versus Crizotinib in Untreated ALK-Positive Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2017 Jun 6.

    Google Scholar 

  • Diaz LA, Marabelle A, Delord JP, Shapira-Frommer R, Geva R, Peled N, Kim TW, Andre T, Van Cutsem E, Guimbaud R, Jaeger D. Pembrolizumab therapy for microsatellite instability high (MSI-H) colorectal cancer (CRC) and non-CRC. (2016).

    Google Scholar 

  • Mackey HM, Bengtsson T. Sample size and threshold estimation for clinical trials with predictive biomarkers. Contemporary clinical trials. 2013 Nov 30;36(2):664–72.

    Article  Google Scholar 

  • Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Statistics in medicine. 2006 Jan 15;25(1):127–41.

    Article  MathSciNet  Google Scholar 

  • Altman DG, Royston P. The cost of dichotomising continuous variables. Bmj. 2006 May 4;332(7549):1080.

    Article  Google Scholar 

  • Williams BA, Mandrekar JN, Mandrekar SJ, Cha SS, Furth AF. Finding optimal cutpoints for continuous covariates with binary and time-to-event outcomes. Technical Report Series #79. 2006. http://www.mayo.edu/research/documents/biostat-79pdf/doc-10027230.

  • Selvin S. Two issues concerning the analysis of grouped data. European journal of epidemiology. 1987 Sep 1;3(3):284–7.

    Article  Google Scholar 

  • Verweij PJ, Van Houwelingen HC. Cross-validation in survival analysis. Statistics in medicine. 1993 Dec 30;12(24):2305–14.

    Article  Google Scholar 

  • Holländer N, Sauerbrei W, Schumacher M. Confidence intervals for the effect of a prognostic factor after selection of an ‘optimal’ cutpoint. Statistics in medicine. 2004 Jun 15;23(11):1701–13.

    Article  Google Scholar 

  • Ragland DR. Dichotomizing continuous outcome variables: dependence of the magnitude of association and statistical power on the cutpoint. Epidemiology. 1992 Sep 1;3(5):434–40.

    Article  Google Scholar 

  • Altman DG, Lausen B, Sauerbrei W, Schumacher M. Dangers of using “optimal” cutpoints in the evaluation of prognostic factors. JNCI: Journal of the National Cancer Institute. 1994 Jun 1;86(11):829–35.

    Article  Google Scholar 

  • Mazumdar M, Glassman JR. Categorizing a prognostic variable: review of methods, code for easy implementation and applications to decision-making about cancer treatments. Statistics in medicine. 2000 Jan 15;19(1):113–32.

    Article  Google Scholar 

  • Contal C, O’Quigley J. An application of changepoint methods in studying the effect of age on survival in breast cancer. Computational statistics & data analysis. 1999 May 28;30(3):253–70.

    Article  MATH  Google Scholar 

  • Faraggi D, Simon R. A Simulation Study of Cross-Validation for Selecting An Optimal Cutpoint In Univariate Survival Analysis. Statistics in medicine. 1996 Oct 30;15(20):2203–13.

    Article  Google Scholar 

  • Mazumdar M, Smith A, Bacik J. Methods for categorizing a prognostic variable in a multivariable setting. Statistics in medicine. 2003 Feb 28;22(4):559–71.

    Article  Google Scholar 

  • Fridlyand J, Simon RM, Walrath JC, Roach N, Buller R, Schenkein DP, Flaherty KT, Allen JD, Sigal EV, Scher HI. Considerations for the successful co-development of targeted cancer therapies and companion diagnostics. Nature Reviews Drug Discovery. 2013a Oct 1;12(10):743–55.

    Article  Google Scholar 

  • Stone A, Schmitt N. Can a treatment be licenced on the basis of post-treatment predictive biomarkers?. Pharmaceutical statistics. 2014 Jul 1;13(4):214–21.

    Article  Google Scholar 

  • US Food & Drug Administration. Guidance for industry: enrichment strategies for clinical trials to support approval of human drugs and biological products (draft guidance). US Food & Drug Administration [online], http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM332181.pdf (2012).

  • Jiang W, Freidlin B, Simon R. Biomarker-adaptive threshold design: a procedure for evaluating treatment with possible biomarker-defined subset effect. Journal of the National Cancer Institute. 2007 Jul 4;99(13):1036–43.

    Article  Google Scholar 

  • Freidlin B, Simon R. Adaptive signature design: an adaptive clinical trial design for generating and prospectively testing a gene expression signature for sensitive patients. Clinical cancer research. 2005 Nov 1;11(21):7872–8.

    Article  Google Scholar 

  • Freidlin B, Jiang W, Simon R. The cross-validated adaptive signature design. Clinical Cancer Research. 2010 Jan 15;16(2):691–8.

    Article  Google Scholar 

  • Mi G. Enhancement of the adaptive signature design for learning and confirming in a single pivotal trial. Pharmaceutical statistics. 2017 May 5.

    Google Scholar 

  • Fridlyand J, Yeh RF, Mackey H, Bengtsson T, Delmar P, Spaniolo G, Lieberman G. An industry statistician’s perspective on PHC drug development. Contemporary clinical trials. 2013b Nov 30;36(2):624–35.

    Article  Google Scholar 

[Survey of Methods]

  • Polley MY, Freidlin B, Korn EL, Conley BA, Abrams JS, McShane LM. Statistical and practical considerations for clinical evaluation of predictive biomarkers. Journal of the National Cancer Institute. 2013 Oct 17;105(22):1677–83.

    Article  Google Scholar 

[Youden’s Index and Related Literature]

  • Schafer H. Constructing a cut-off point for a quantitative diagnostic test. Statistics in Medicine. 1989; 8: 1381–1391.

    Article  Google Scholar 

  • López-Ratón M, Rodríguez-Álvarez MX, Cadarso-Suárez C, Gude-Sampedro F. OptimalCutpoints: an R package for selecting optimal cutpoints in diagnostic tests. Journal of Statistical Software. 2014 Nov 13;61(8):1–36.

    Article  Google Scholar 

  • Schisterman EF, Perkins NJ, Liu A, Bondell H. Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology. 2005 Jan 1;16(1):73–81.

    Article  Google Scholar 

  • Youden WJ. Index for rating diagnostic tests. Cancer. 1950 Jan 1;3(1):32–5.

    Article  Google Scholar 

[Maximum Chi-Square and Related Literature]

  • Miller R, Siegmund D. Maximally selected chi square statistics. Biometrics. 1982 Dec 1:1011–6.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou Q, Dhungana B. A SAS® Macro for biomarker analysis using maximally selected Chi square statistics with application in oncology. 2012.

    Google Scholar 

  • Perkins SM, Bales C, Vladislav T, Althouse S, Miller KD, Sandusky G, Badve S, Nakshatri H. TFAP2C expression in breast cancer: correlation with overall survival beyond 10 years of initial diagnosis. Breast cancer research and treatment. 2015 Aug 1;152(3):519–31.

    Article  Google Scholar 

[MFP/MFPI and Related Literature]

  • Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling. Applied statistics. 1994 Jan 1:429–67.

    Article  Google Scholar 

  • Sauerbrei W, Royston P. Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials. Journal of the Royal Statistical Society: Series A (Statistics in Society). 1999 Jan 1;162(1):71–94.

    Article  Google Scholar 

  • Royston P, Sauerbrei W. A new approach to modelling interactions between treatment and continuous covariates in clinical trials by using fractional polynomials. Statistics in medicine. 2004 Aug 30;23(16):2509–25.

    Article  Google Scholar 

  • Binder H, Sauerbrei W, Royston P. Comparison between splines and fractional polynomials for multivariable model building with continuous covariates: a simulation study with continuous response. Statistics in Medicine. 2013 Jun 15;32(13):2262–77.

    Article  MathSciNet  Google Scholar 

  • Sauerbrei W, Meier-Hirmer C, Benner A, Royston P. Multivariable regression model building by using fractional polynomials: description of SAS, STATA and R programs. Computational Statistics & Data Analysis. 2006 Aug 31;50(12):3464–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Heinze G, Ploner M, Dunkler D (2017). coxphw: Weighted Estimation in Cox Regression. R package version 4.0.0.

    Google Scholar 

  • Gore ME, Griffin CL, Hancock B, Patel PM, Pyle L, Aitchison M, James N, Oliver RT, Mardiak J, Hussain T, Sylvester R. Interferon alfa-2a versus combination therapy with interferon alfa-2a, interleukin-2, and fluorouracil in patients with untreated metastatic renal cell carcinoma (MRC RE04/EORTC GU 30012): an open-label randomised trial. The Lancet. 2010 Feb 26;375(9715):641–8.

    Article  Google Scholar 

  • Wong HB, Machin D, Tan SB, Wong TY, Saw SM. Ocular component growth curves among Singaporean children with different refractive error status. Investigative ophthalmology & visual science. 2010 Mar 1;51(3):1341–7.

    Article  Google Scholar 

  • Bray BD, Ayis S, Campbell J, Cloud GC, James M, Hoffman A, Tyrrell PJ, Wolfe CD, Rudd AG. Associations between stroke mortality and weekend working by stroke specialist physicians and registered nurses: prospective multicentre cohort study. PLoS medicine. 2014 Aug 19;11(8):e1001705.

    Article  Google Scholar 

  • McMillan A, Bratton DJ, Faria R, Laskawiec-Szkonter M, Griffin S, Davies RJ, Nunn AJ, Stradling JR, Riha RL, Morrell MJ, PREDICT Investigators. Continuous positive airway pressure in older people with obstructive sleep apnoea syndrome (PREDICT): a 12-month, multicentre, randomised trial. The Lancet Respiratory Medicine. 2014 Oct 31;2(10):804–12.

    Article  Google Scholar 

  • Royston P, Sauerbrei W. Multivariable modeling with cubic regression splines: a principled approach. Stata Journal. 2007;7(1):45–70.

    Article  Google Scholar 

[Predictiveness Curve and Related Literature]

  • Janes H, Pepe MS, Bossuyt PM, Barlow WE. Measuring the performance of markers for guiding treatment decisions. Annals of internal medicine. 2011 Feb 15;154(4):253–9.

    Article  Google Scholar 

  • Yang H, Tang R, Hale M, Huang J. A visualization method measuring the performance of biomarkers for guiding treatment decisions. Pharmaceutical statistics. 2016 Mar 1;15(2):152–64.

    Article  Google Scholar 

[STEPP and Related Literature; Applications]

  • Bonetti M, Gelber RD. A graphical method to assess treatment-covariate interactions using the Cox model on subsets of the data. Statistics in medicine. 2000 Oct 15;19(19):2595–609.

    Article  Google Scholar 

  • Bonetti M, Gelber RD. Patterns of treatment effects in subsets of patients in clinical trials. Biostatistics. 2004 Jul 1;5(3):465–81.

    Article  MATH  Google Scholar 

  • Bonetti M, Cole BF, Gelber RD. Another STEPP in the Right Direction. Journal of Clinical Oncology. 2008 Aug 1;26(22):3813–4.

    Article  Google Scholar 

  • Bonetti M, Zahrieh D, Cole BF, Gelber RD. A small sample study of the STEPP approach to assessing treatment–covariate interactions in survival data. Statistics in medicine. 2009 Apr 15;28(8):1255–68.

    Article  MathSciNet  Google Scholar 

  • Lazar AA, Cole BF, Bonetti M, Gelber RD. Evaluation of treatment-effect heterogeneity using biomarkers measured on a continuous scale: subpopulation treatment effect pattern plot. Journal of Clinical Oncology. 2010 Sep 13;28(29):4539–44.

    Article  Google Scholar 

  • Wai-ki Yip, with contributions from Ann Lazar, David Zahrieh, Chip Cole, Ann Lazar, Marco Bonetti, Victoria Wang, William Barcella and Richard Gelber (2014). stepp: Subpopulation Treatment Effect Pattern Plot (STEPP). R package version 3.0-11. https://CRAN.R-project.org/package=stepp

  • Pirker R, Pereira JR, von Pawel J, Krzakowski M, Ramlau R, Park K, de Marinis F, Eberhardt WE, Paz-Ares L, Störkel S, Schumacher KM. EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. The lancet oncology. 2012 Jan 31;13(1):33–42.

    Article  Google Scholar 

  • Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im SA, Masuda N, Colleoni M, DeMichele A, Loi S, Verma S, Iwata H. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. The Lancet Oncology. 2016 Apr 30;17(4):425–39.

    Article  Google Scholar 

  • Muro K, Cho JY, Bodoky G, Goswami C, Chao Y, dos Santos LV, Shimada Y, Topuzov E, Van Cutsem E, Tabernero J, Zalcberg JR. Efficacy and safety of ramucirumab (RAM) for metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma across age subgroups in two global phase 3 trials. Journal of Clinical Oncology. 2017 Feb; 35(4): suppl 3-3.

    Article  Google Scholar 

  • Hanania NA, Wenzel S, Rosén K, Hsieh HJ, Mosesova S, Choy DF, Lal P, Arron JR, Harris JM, Busse W. Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. American journal of respiratory and critical care medicine. 2013 Apr 15;187(8):804–11.

    Article  Google Scholar 

  • Tajik P, Monfrance M, van’t Hooft J, Liem SM, Schuit E, Bloemenkamp KW, Duvekot JJ, Nij Bijvank B, Franssen MT, Oudijk MA, Scheepers HC. A multivariable model to guide the decision for pessary placement to prevent preterm birth in women with a multiple pregnancy: a secondary analysis of the ProTWIN trial. Ultrasound in Obstetrics & Gynecology. 2016 Jul 1;48(1):48–55.

    Article  Google Scholar 

  • Bergot E, Creveuil C, Zalcman G. A STEPP too far for FLEX?. The Lancet Oncology. 2012 Feb 29;13(2):e51.

    Article  Google Scholar 

  • Mi G, Nguyen T and Denne J. Cross-Validated STEPP Analysis for Biomarker Subgroup Determination. The 39th annual Midwest Biopharmaceutical Statistics Workshop (MBSW) 2016. http://www.mbswonline.com/upload/presentation_5-19-2016-14-28-54.cvstepp-mbsw-lly-gm.pdf

[Biomarker Signature]

  • Felson DT, Anderson JJ, Boers M, Bombardier C, Furst D, Goldsmith C, Katz LM, Lightfoot R, Paulus H, Strand V, Tugwell P. American College of Rheumatology preliminary definition of improvement in rheumatoid arthritis. Arthritis & Rheumatology. 1995 Jun 1;38(6):727–35.

    Article  Google Scholar 

  • National Cancer Institute: PDQ® Prostate Cancer Screening. Bethesda, MD: National Cancer Institute, Date last modified September 29, 2017. Available at: https://www.cancer.gov/types/prostate/hp/prostate-screening-pdq#link/_357_toc. Accessed January 5, 2018.

  • Sidransky D. Emerging molecular markers of cancer. Nature Reviews Cancer. 2002 Mar 1;2(3):210–9.

    Article  Google Scholar 

  • Kumar S, Mohan A, Guleria R. Biomarkers in cancer screening, research and detection: present and future: a review. Biomarkers. 2006 Jan 1;11(5):385–405.

    Article  Google Scholar 

  • Bansal A, Sullivan Pepe M. When does combining markers improve classification performance and what are implications for practice?. Statistics in medicine. 2013 May 20;32(11):1877–92.

    Article  MathSciNet  Google Scholar 

  • Hocking RR. A Biometrics invited paper. The analysis and selection of variables in linear regression. Biometrics. 1976 Mar 1;32(1):1–49.

    Article  MathSciNet  Google Scholar 

  • Genuer R, Poggi JM, Tuleau-Malot C. Variable selection using random forests. Pattern Recognition Letters. 2010 Oct 15;31(14):2225–36.

    Article  Google Scholar 

  • Duchon J. Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Constructive theory of functions of several variables. 1977:85–100.

    Google Scholar 

  • Su JQ, Liu JS. Linear combinations of multiple diagnostic markers. Journal of the American Statistical Association. 1993 Dec 1;88(424):1350–5.

    Article  MathSciNet  MATH  Google Scholar 

  • Pepe MS, Thompson ML. Combining diagnostic test results to increase accuracy. Biostatistics. 2000 Jun 1;1(2):123–40.

    Article  MATH  Google Scholar 

  • Liu C, Liu A, Halabi S. A min–max combination of biomarkers to improve diagnostic accuracy. Statistics in medicine. 2011 Jul 20;30(16):2005–14.

    Article  MathSciNet  Google Scholar 

  • Kang L, Liu A, Tian L. Linear combination methods to improve diagnostic/prognostic accuracy on future observations. Statistical methods in medical research. 2016 Aug;25(4):1359–80.

    Article  MathSciNet  Google Scholar 

  • Kouskoumvekaki I, Yang Z, Jónsdóttir SÓ, Olsson L, Panagiotou G. Identification of biomarkers for genotyping Aspergilli using non-linear methods for clustering and classification. BMC bioinformatics. 2008 Jan 28;9(1):59.

    Article  Google Scholar 

  • Huang Y, Fong Y. Identifying optimal biomarker combinations for treatment selection via a robust kernel method. Biometrics. 2014 Dec 1;70(4):891–901.

    Article  MathSciNet  MATH  Google Scholar 

[Meta-Analysis]

  • Debray T, Moons KG, Ahmed I, Koffijberg H, Riley RD. A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis. Statistics in Medicine. 2013 Aug 15;32(18):3158–80.

    Article  MathSciNet  Google Scholar 

  • Sauerbrei W, Royston P. A new strategy for meta-analysis of continuous covariates in observational studies. Statistics in medicine. 2011 Dec 10;30(28):3341–60.

    Article  MathSciNet  Google Scholar 

  • Wang XV, Cole B, Bonetti M, Gelber RD. Meta-STEPP: subpopulation treatment effect pattern plot for individual patient data meta-analysis. Statistics in medicine. 2016 Sep 20;35(21):3704–16.

    Article  MathSciNet  Google Scholar 

[Miscellaneous]

  • David CR. Regression models and life tables (with discussion). Journal of the Royal Statistical Society. 1972;34:187–220.

    MathSciNet  Google Scholar 

  • FDA Guidance. Principles for Codevelopment of an In Vitro Companion Diagnostic Device with a Therapeutic Product. July 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mi, G., Li, W., Nguyen, T.S. (2019). Characterize and Dichotomize a Continuous Biomarker. In: Fang, L., Su, C. (eds) Statistical Methods in Biomarker and Early Clinical Development. Springer, Cham. https://doi.org/10.1007/978-3-030-31503-0_2

Download citation

Publish with us

Policies and ethics