Skip to main content

Analysis of the Elastic Model

  • Chapter
  • First Online:
An Elastic Model for Volcanology

Part of the book series: Lecture Notes in Geosystems Mathematics and Computing ((LNGMC))

  • 193 Accesses

Abstract

In this chapter we study the linear elastic model presented in the introduction. We recall that it is applied in volcanology to describe the surface deformation effects caused by a magma chamber embedded into Earth’s interior and exerting on it a uniform hydrostatic pressure. From a mathematical point of view, the modeling assumptions translates into a Neumann boundary value problem for the classic Lamé system in a half-space with an embedded pressurized cavity. To be more precise, the boundary conditions are traction-free for the air/crust boundary and uniformly hydrostatic for the chamber boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramovich, Y.A., Aliprantis, C.D.: An Invitation to Operator Theory. Graduate Studies in Mathematics, vol. 50. American Mathematical Society, Providence (2002)

    Google Scholar 

  2. Agmon, S.: Unicité et convexité dans les problèmes differéntiels. Sém. de Mathématiques Sup., Univ. de Montréal (1965)

    Google Scholar 

  3. Alessandrini, G., Morassi, A.: Strong unique continuation for Lamé system of elasticity. Commun. Partial Differ. Equ. 26, 1787–1810 (2001)

    Article  Google Scholar 

  4. Alessandrini, G., Rondi, L.: Optimal stability for the inverse problem of multiple cavities. J. Differ. Equ. 176, 356–386 (2001)

    Article  MathSciNet  Google Scholar 

  5. Alessandrini, G., Beretta, E., Rosset, E., Vessella, S.: Optimal stability for inverse elliptic boundary value problems with unknown boundaries. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29, 755–806 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Alessandrini, G., Rosset, E., Seo, J.K.: Optimal size estimates for the inverse conductivity problem with one measurement. Proc. Am. Math. Soc. 128, 53–64 (2000)

    Article  MathSciNet  Google Scholar 

  7. Alessandrini, G., Morassi, A., Rosset, E.: Detecting an inclusion in an elastic body by boundary measurements. SIAM J. Math. Anal. 33, 1247–1268 (2002)

    Article  MathSciNet  Google Scholar 

  8. Alessandrini, G., Morassi, A., Rosset, E.: Size estimates. In: Alessandrini, G., Uhlmann, G. (eds.) Inverse Problems: Theory and Applications. Contemporary Mathematics, vol. 333, pp. 1–33. American Mathematical Society, Providence (2003)

    Chapter  Google Scholar 

  9. Alessandrini, G., Morassi, A., Rosset, E.: The linear constraints in Poincaré and Korn type inequalities. Forum Math 20, 557–569 (2008)

    Article  MathSciNet  Google Scholar 

  10. Alessandrini, G., Morassi, A., Rosset, E., Vessella, S.: On doubling inequalities for elliptic systems. J. Math. Anal. Appl. 357, 349–355 (2009)

    Article  MathSciNet  Google Scholar 

  11. Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurements. Lecture Notes in Mathematics. Springer, Berlin (2004)

    Book  Google Scholar 

  12. Ammari, H., Bretin, E., Garnier, J., Kang, H., Lee, H., Wahab, A.: Mathematical Methods in Elasticity Imaging. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2015)

    Book  Google Scholar 

  13. Amrouche, C., Girault, V., Giroire, J.: Weighted Sobolev spaces for Laplace’s equation in \(\mathbb {R}^n\). J. Math. Pures Appl. 73, 579–606 (1994)

    Google Scholar 

  14. Aspri, A., Beretta, E., Mascia, C.: Analysis of a Mogi-type model describing surface deformations induced by magma chamber embedded in an elastic half-space. J. École Polytech. Math. 4, 223–255 (2017)

    Article  MathSciNet  Google Scholar 

  15. Aspri, A., Beretta, E., Rosset, E.: On an elastic model arising from volcanology: an analysis of the direct and inverse problem. J. Differ. Equ. 265, 6400–6423 (2018)

    Article  MathSciNet  Google Scholar 

  16. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  17. Ciarlet, P.G.: Mathematical Elasticity. Vol. I. Three-Dimensional Elasticity. Studies in Mathematics and Its Applications, vol. 20. North-Holland Publishing Co., Amsterdam (1988)

    Google Scholar 

  18. Dahlberg, B.E., Kenig, C.E., Verchota, G.C.: Boundary value problem for the system of elastostatics in Lipschitz domains. Duke Math. J. 57, 795–818 (1988)

    Article  MathSciNet  Google Scholar 

  19. Fabes, E.B., Kenig, C.E., Verchota, G.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 795–818 (1988)

    Article  MathSciNet  Google Scholar 

  20. Fichera, G.: Sull’esistenza e sul calcolo delle soluzioni dei problemi al contorno, relativi all’equilibrio di un corpo elastico. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3e serie 4, 35–99 (1950)

    Google Scholar 

  21. Friedman, A., Vogelius, M.: Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Ration. Mech. Anal. 105, 299–326 (1984)

    Article  MathSciNet  Google Scholar 

  22. Garofalo, N., Lin, F.: Monotonicity properties of variational integrals, A p weights and unique continuation. Indiana Univ. Math. J. 35, 245–268 (1986)

    Article  MathSciNet  Google Scholar 

  23. Gurtin, M.E.: The linear theory of elasticity. In: Encyclopedia of Physics, vol. VI a/2. Springer, Berlin (1972)

    Google Scholar 

  24. Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover, New York (1953)

    Book  Google Scholar 

  25. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    Book  Google Scholar 

  26. Kondrat’ev, V.A., Oleinik, O.A.: Boundary-value problems for the system of elasticity theory in unbounded domains. Korn’s inequalities. Russ. Math. Surv. 43, 65–119 (1988)

    Article  Google Scholar 

  27. Kress, R.: Linear Integral Equations. Springer, Berlin (1989)

    Book  Google Scholar 

  28. Kupradze, V.D.: Potential Methods in the Theory of Elasticity. Israel Program for Scientific Translations, Jerusalem (1965)

    MATH  Google Scholar 

  29. Landis, E.M.: A three-sphere theorem. Dokl. Akad. Nauk SSSR 148, 277–279 (1963); Engl. trans. Soviet Math. Dokl. 4, 76–78 (1963)

    Google Scholar 

  30. Lewiński, T., Sokołowski, J.: Energy change due to the appearance of cavities in elastic solids. Int. J. Solids Struct. 40, 1765–1803 (2003)

    Article  Google Scholar 

  31. Masmoudi, N.: About the Hardy inequality. In: Schleicher, D., Lackmann, M. (eds.) Invitation to Mathematics. From Competitions to Research, pp. 165–180. Springer, Berlin (2011)

    Chapter  Google Scholar 

  32. Mindlin, R.D.: Force at a point in the interior of a semiinfinite solid. J. Appl. Phys. 7, 195–202 (1936)

    MATH  Google Scholar 

  33. Mindlin, R.D.: Force at a point in the interior of a semi-infinite solid. In: Proceedings of the First Midwestern Conference on Solid Mechanics, April, University of Illinois, Urbana (1954)

    Google Scholar 

  34. Morassi, A., Rosset, E.: Stable determination of cavities in elastic bodies. Inverse Prob. 20, 453–480 (2004)

    Article  MathSciNet  Google Scholar 

  35. Morassi, A., Rosset, E.: Uniqueness and stability in determining a rigid inclusion in an elastic body. Mem. Am. Math. Soc. 200(938), 453–480 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Valent, T.: Boundary Value Problems of Finite Elasticity, Local Theorems on Existence, Uniqueness and Analytic Dependence on Data. Springer, New York (1988)

    Book  Google Scholar 

  37. Verchota, G.C.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)

    Article  MathSciNet  Google Scholar 

  38. Yosida, K.: Functional Analysis. Springer, Berlin (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aspri, A. (2019). Analysis of the Elastic Model. In: An Elastic Model for Volcanology. Lecture Notes in Geosystems Mathematics and Computing. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-31475-0_3

Download citation

Publish with us

Policies and ethics