Skip to main content

The Nuclear RNA Exosome and Its Cofactors

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1203))

Abstract

The RNA exosome is a highly conserved ribonuclease endowed with 3′–5′ exonuclease and endonuclease activities. The multisubunit complex resides in both the nucleus and the cytoplasm, with varying compositions and activities between the two compartments. While the cytoplasmic exosome functions mostly in mRNA quality control pathways, the nuclear RNA exosome partakes in the 3′-end processing and complete decay of a wide variety of substrates, including virtually all types of noncoding (nc) RNAs. To handle these diverse tasks, the nuclear exosome engages with dedicated cofactors, some of which serve as activators by stimulating decay through oligoA addition and/or RNA helicase activities or, as adaptors, by recruiting RNA substrates through their RNA-binding capacities. Most nuclear exosome cofactors contain the essential RNA helicase Mtr4 (MTR4 in humans). However, apart from Mtr4, nuclear exosome cofactors have undergone significant evolutionary divergence. Here, we summarize biochemical and functional knowledge about the nuclear exosome and exemplify its cofactor variety by discussing the best understood model organisms—the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and human cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P (1999) The yeast exosome and human PM-Scl are related complexes of 3′ → 5′ exonucleases. Genes Dev 13:2148–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen PR, Domanski M, Kristiansen MS, Storvall H, Ntini E, Verheggen C, Schein A, Bunkenborg J, Poser I, Hallais M et al (2013) The human cap-binding complex is functionally connected to the nuclear RNA exosome. Nat Struct Mol Biol 20:1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arigo JT, Eyler DE, Carroll KL, Corden JL (2006) Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell 23:841–851

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu YB, Kleinman CL, Landry-Voyer AM, Majewski J, Bachand F (2012) Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1. PLoS Genet 8:e1003078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasius M, Wagner SA, Choudhary C, Bartek J, Jackson SP (2014) A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response. Genes Dev 28:1977–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bresson SM, Conrad NK (2013) The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet 9:e1003893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bresson SM, Hunter OV, Hunter AC, Conrad NK (2015) Canonical poly(A) polymerase activity promotes the decay of a wide variety of mammalian nuclear RNAs. PLoS Genet 11:e1005610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bresson S, Tuck A, Staneva D, Tollervey D (2017) Nuclear RNA decay pathways aid rapid remodeling of gene expression in yeast. Mol Cell 65(787–800):e785

    Google Scholar 

  • Brouwer R, Allmang C, Raijmakers R, van Aarssen Y, Egberts WV, Petfalski E, van Venrooij WJ, Tollervey D, Pruijn GJ (2001) Three novel components of the human exosome. J Biol Chem 276:6177–6184

    Article  CAS  PubMed  Google Scholar 

  • Buhler M, Haas W, Gygi SP, Moazed D (2007) RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 129:707–721

    Article  CAS  PubMed  Google Scholar 

  • Cakiroglu SA, Zaugg JB, Luscombe NM (2016) Backmasking in the yeast genome: encoding overlapping information for protein-coding and RNA degradation. Nucleic Acids Res 44:8065–8072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang HM, Triboulet R, Thornton JE, Gregory RI (2013) A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature 497:244–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HM, Futcher B, Leatherwood J (2011) The fission yeast RNA binding protein Mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover. PLoS One 6:e26804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coy S, Volanakis A, Shah S, Vasiljeva L (2013) The Sm complex is required for the processing of non-coding RNAs by the exosome. PLoS One 8:e65606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darby MM, Serebreni L, Pan X, Boeke JD, Corden JL (2012) The Saccharomyces cerevisiae Nrd1-Nab3 transcription termination pathway acts in opposition to Ras signaling and mediates response to nutrient depletion. Mol Cell Biol 32:1762–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziembowski A, Lorentzen E, Conti E, Seraphin B (2007) A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14:15–22

    Article  CAS  PubMed  Google Scholar 

  • Egan ED, Braun CR, Gygi SP, Moazed D (2014) Post-transcriptional regulation of meiotic genes by a nuclear RNA silencing complex. RNA 20:867–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falk S, Weir JR, Hentschel J, Reichelt P, Bonneau F, Conti E (2014) The molecular architecture of the TRAMP complex reveals the organization and interplay of its two catalytic activities. Mol Cell 55:856–867

    Article  CAS  PubMed  Google Scholar 

  • Falk S, Finogenova K, Melko M, Benda C, Lykke-Andersen S, Jensen TH, Conti E (2016) Structure of the RBM7-ZCCHC8 core of the NEXT complex reveals connections to splicing factors. Nat Commun 7:13573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falk S, Bonneau F, Ebert J, Kogel A, Conti E (2017a) Mpp6 incorporation in the nuclear exosome contributes to RNA channeling through the Mtr4 helicase. Cell Rep 20:2279–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falk S, Tants JN, Basquin J, Thoms M, Hurt E, Sattler M, Conti E (2017b) Structural insights into the interaction of the nuclear exosome helicase Mtr4 with the preribosomal protein Nop53. RNA 23:1780–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Kuai B, Wu G, Wu X, Chi B, Wang L, Wang K, Shi Z, Zhang H, Chen S et al (2017) Exosome cofactor hMTR4 competes with export adaptor ALYREF to ensure balanced nuclear RNA pools for degradation and export. EMBO J 36:2870–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasken MB, Laribee RN, Corbett AH (2015) Nab3 facilitates the function of the TRAMP complex in RNA processing via recruitment of Rrp6 independent of Nrd1. PLoS Genet 11:e1005044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giacometti S, Benbahouche NEH, Domanski M, Robert MC, Meola N, Lubas M, Bukenborg J, Andersen JS, Schulze WM, Verheggen C et al (2017) Mutually exclusive CBC-containing complexes contribute to RNA fate. Cell Rep 18:2635–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gudipati RK, Villa T, Boulay J, Libri D (2008) Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nat Struct Mol Biol 15:786–794

    Article  CAS  PubMed  Google Scholar 

  • Guiro J, Murphy S (2017) Regulation of expression of human RNA polymerase II-transcribed snRNA genes. Open Biol 7:170073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halbach F, Reichelt P, Rode M, Conti E (2013) The yeast ski complex: crystal structure and RNA channeling to the exosome complex. Cell 154:814–826

    Article  CAS  PubMed  Google Scholar 

  • Hallais M, Pontvianne F, Andersen PR, Clerici M, Lener D, Benbahouche Nel H, Gostan T, Vandermoere F, Robert MC, Cusack S et al (2013) CBC-ARS2 stimulates 3′-end maturation of multiple RNA families and favors cap-proximal processing. Nat Struct Mol Biol 20:1358–1366

    Article  CAS  PubMed  Google Scholar 

  • Hamill S, Wolin SL, Reinisch KM (2010) Structure and function of the polymerase core of TRAMP, a RNA surveillance complex. Proc Natl Acad Sci U S A 107:15045–15050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harigaya Y, Tanaka H, Yamanaka S, Tanaka K, Watanabe Y, Tsutsumi C, Chikashige Y, Hiraoka Y, Yamashita A, Yamamoto M (2006) Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature 442:45–50

    Article  CAS  PubMed  Google Scholar 

  • Holub P, Lalakova J, Cerna H, Pasulka J, Sarazova M, Hrazdilova K, Arce MS, Hobor F, Stefl R, Vanacova S (2012) Air2p is critical for the assembly and RNA-binding of the TRAMP complex and the KOW domain of Mtr4p is crucial for exosome activation. Nucleic Acids Res 40:5679–5693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houseley J, Tollervey D (2006) Yeast Trf5p is a nuclear poly(A) polymerase. EMBO Rep 7:205–211

    Article  CAS  PubMed  Google Scholar 

  • Iasillo C, Schmid M, Yahia Y, Maqbool MA, Descostes N, Karadoulama E, Bertrand E, Andrau JC, Jensen TH (2017) ARS2 is a general suppressor of pervasive transcription. Nucleic Acids Res 45:10229–10241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Januszyk K, Lima CD (2014) The eukaryotic RNA exosome. Curr Opin Struct Biol 24:132–140

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Wang X, Liu F, Guenther UP, Srinivasan S, Anderson JT, Jankowsky E (2011) The RNA helicase Mtr4p modulates polyadenylation in the TRAMP complex. Cell 145:890–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SJ, Jackson RN (2013) Ski2-like RNA helicase structures: common themes and complex assemblies. RNA Biol 10:33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller C, Woolcock K, Hess D, Buhler M (2010) Proteomic and functional analysis of the noncanonical poly(A) polymerase Cid14. RNA 16:1124–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Heo DH, Kim I, Suh JY, Kim M (2016) Exosome cofactors connect transcription termination to RNA processing by guiding terminated transcripts to the appropriate exonuclease within the nuclear exosome. J Biol Chem 291:13229–13242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalinski E, Kogel A, Ebert J, Reichelt P, Stegmann E, Habermann B, Conti E (2016) Structure of a cytoplasmic 11-subunit RNA exosome complex. Mol Cell 63:125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121:713–724

    Article  CAS  PubMed  Google Scholar 

  • Larochelle M, Lemay JF, Bachand F (2012) The THO complex cooperates with the nuclear RNA surveillance machinery to control small nucleolar RNA expression. Nucleic Acids Res 40:10240–10253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee NN, Chalamcharla VR, Reyes-Turcu F, Mehta S, Zofall M, Balachandran V, Dhakshnamoorthy J, Taneja N, Yamanaka S, Zhou M et al (2013) Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance. Cell 155:1061–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lejeune F, Li X, Maquat LE (2003) Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol Cell 12:675–687

    Article  CAS  PubMed  Google Scholar 

  • Lemay JF, Marguerat S, Larochelle M, Liu X, van Nues R, Hunyadkurti J, Hoque M, Tian B, Granneman S, Bahler J et al (2016) The Nrd1-like protein Seb1 coordinates cotranscriptional 3′ end processing and polyadenylation site selection. Genes Dev 30:1558–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libri D (2010) Nuclear poly(a)-binding proteins and nuclear degradation: take the mRNA and run? Mol Cell 37:3–5

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127:1223–1237

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Niu CY, Wu Y, Tan D, Wang Y, Ye MD, Liu Y, Zhao W, Zhou K, Liu QS et al (2016) CryoEM structure of yeast cytoplasmic exosome complex. Cell Res 26:822–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorentzen E, Dziembowski A, Lindner D, Seraphin B, Conti E (2007) RNA channelling by the archaeal exosome. EMBO Rep 8:470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubas M, Christensen MS, Kristiansen MS, Domanski M, Falkenby LG, Lykke-Andersen S, Andersen JS, Dziembowski A, Jensen TH (2011) Interaction profiling identifies the human nuclear exosome targeting complex. Mol Cell 43:624–637

    Article  CAS  PubMed  Google Scholar 

  • Lubas M, Damgaard CK, Tomecki R, Cysewski D, Jensen TH, Dziembowski A (2013) Exonuclease hDIS3L2 specifies an exosome-independent 3′-5′ degradation pathway of human cytoplasmic mRNA. EMBO J 32:1855–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubas M, Andersen PR, Schein A, Dziembowski A, Kudla G, Jensen TH (2015) The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis. Cell Rep 10:178–192

    Article  CAS  PubMed  Google Scholar 

  • Makino DL, Baumgartner M, Conti E (2013) Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 495:70–75

    Article  CAS  PubMed  Google Scholar 

  • Makino DL, Schuch B, Stegmann E, Baumgartner M, Basquin C, Conti E (2015) RNA degradation paths in a 12-subunit nuclear exosome complex. Nature 524:54–58

    Article  CAS  PubMed  Google Scholar 

  • Malecki M, Viegas SC, Carneiro T, Golik P, Dressaire C, Ferreira MG, Arraiano CM (2013) The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J 32:1842–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzluff WF, Koreski KP (2017) Birth and death of histone mRNAs. Trends Genet 33:745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meola N, Jensen TH (2017) Targeting the nuclear RNA exosome: poly(A) binding proteins enter the stage. RNA Biol 14:820–826

    Article  PubMed  PubMed Central  Google Scholar 

  • Meola N, Domanski M, Karadoulama E, Chen Y, Gentil C, Pultz D, Vitting-Seerup K, Lykke-Andersen S, Andersen JS, Sandelin A et al (2016) Identification of a nuclear exosome decay pathway for processed transcripts. Mol Cell 64:520–533

    Article  CAS  PubMed  Google Scholar 

  • Milligan L, Decourty L, Saveanu C, Rappsilber J, Ceulemans H, Jacquier A, Tollervey D (2008) A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol Cell Biol 28:5446–5457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′ → 5′ exoribonucleases. Cell 91:457–466

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P, Petfalski E, Houalla R, Podtelejnikov A, Mann M, Tollervey D (2003) Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs. Mol Cell Biol 23:6982–6992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molleston JM, Sabin LR, Moy RH, Menghani SV, Rausch K, Gordesky-Gold B, Hopkins KC, Zhou R, Jensen TH, Wilusz JE et al (2016) A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes Dev 30:1658–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH, Fasken MB (2017) The RNA exosome and RNA exosome-linked disease. RNA 24(2):127–142

    Article  PubMed  CAS  Google Scholar 

  • Neil H, Malabat C, d'Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Ogami K, Richard P, Chen Y, Hoque M, Li W, Moresco JJ, Yates JR III, Tian B, Manley JL (2017) An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev 31(12):1257–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porrua O, Libri D (2013) A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nat Struct Mol Biol 20:884–891

    Article  CAS  PubMed  Google Scholar 

  • Porrua O, Libri D (2015) Transcription termination and the control of the transcriptome: why, where and how to stop. Nat Rev Mol Cell Biol 16:190–202

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Turcu FE, Zhang K, Zofall M, Chen E, Grewal SI (2011) Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nat Struct Mol Biol 18:1132–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rialdi A, Hultquist J, Jimenez-Morales D, Peralta Z, Campisi L, Fenouil R, Moshkina N, Wang ZZ, Laffleur B, Kaake RM et al (2017) The RNA exosome syncs IAV-RNAPII transcription to promote viral Ribogenesis and infectivity. Cell 169(679-692):e614

    Google Scholar 

  • Robinson SR, Oliver AW, Chevassut TJ, Newbury SF (2015) The 3′ to 5′ Exoribonuclease DIS3: from structure and mechanisms to biological functions and role in human disease. Biomol Ther 5:1515–1539

    CAS  Google Scholar 

  • San Paolo S, Vanacova S, Schenk L, Scherrer T, Blank D, Keller W, Gerber AP (2009) Distinct roles of non-canonical poly(A) polymerases in RNA metabolism. PLoS Genet 5:e1000555

    Article  PubMed  CAS  Google Scholar 

  • Schilders G, Raijmakers R, Raats JM, Pruijn GJ (2005) MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res 33:6795–6804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt K, Butler JS (2013) Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity. Wiley Interdiscip Rev RNA 4:217–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt K, Xu Z, Mathews DH, Butler JS (2012) Air proteins control differential TRAMP substrate specificity for nuclear RNA surveillance. RNA 18:1934–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuch B, Feigenbutz M, Makino DL, Falk S, Basquin C, Mitchell P, Conti E (2014) The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. EMBO J 33:2829–2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz D, Schwalb B, Kiesel A, Baejen C, Torkler P, Gagneur J, Soeding J, Cramer P (2013) Transcriptome surveillance by selective termination of noncoding RNA synthesis. Cell 155:1075–1087

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Pellarin R, Fridy PC, Fernandez-Martinez J, Thompson MK, Li Y, Wang QJ, Sali A, Rout MP, Chait BT (2015) A strategy for dissecting the architectures of native macromolecular assemblies. Nat Methods 12:1135–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi M, Zhang H, Wu X, He Z, Wang L, Yin S, Tian B, Li G, Cheng H (2017) ALYREF mainly binds to the 5′ and the 3′ regions of the mRNA in vivo. Nucleic Acids Res 45:9640–9653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikorska N, Zuber H, Gobert A, Lange H, Gagliardi D (2017) RNA degradation by the plant RNA exosome involves both phosphorolytic and hydrolytic activities. Nat Commun 8:2162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silla T, Karadoulama E, Mąkosa D, Lubas M, Jensen TH (2018) The RNA exosome adaptor ZFC3H1 functionally competes with nuclear export activity to retain target transcripts. Cell Rep 23(7):2199–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staals RH, Bronkhorst AW, Schilders G, Slomovic S, Schuster G, Heck AJ, Raijmakers R, Pruijn GJ (2010) Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO J 29:2358–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinmetz EJ, Warren CL, Kuehner JN, Panbehi B, Ansari AZ, Brow DA (2006) Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell 24:735–746

    Article  CAS  PubMed  Google Scholar 

  • Thiebaut M, Kisseleva-Romanova E, Rougemaille M, Boulay J, Libri D (2006) Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol Cell 23:853–864

    Article  CAS  PubMed  Google Scholar 

  • Thoms M, Thomson E, Bassler J, Gnadig M, Griesel S, Hurt E (2015) The exosome is recruited to RNA substrates through specific adaptor proteins. Cell 162:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Tiedje C, Lubas M, Tehrani M, Menon MB, Ronkina N, Rousseau S, Cohen P, Kotlyarov A, Gaestel M (2015) p38MAPK/MK2-mediated phosphorylation of RBM7 regulates the human nuclear exosome targeting complex. RNA 21:262–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomecki R, Kristiansen MS, Lykke-Andersen S, Chlebowski A, Larsen KM, Szczesny RJ, Drazkowska K, Pastula A, Andersen JS, Stepien PP et al (2010) The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J 29:2342–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuck AC, Tollervey D (2013) A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell 154:996–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tudek A, Porrua O, Kabzinski T, Lidschreiber M, Kubicek K, Fortova A, Lacroute F, Vanacova S, Cramer P, Stefl R et al (2014) Molecular basis for coordinating transcription termination with noncoding RNA degradation. Mol Cell 55:467–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valen E, Preker P, Andersen PR, Zhao X, Chen Y, Ender C, Dueck A, Meister G, Sandelin A, Jensen TH (2011) Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes. Nat Struct Mol Biol 18:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Vanacova S, Wolf J, Martin G, Blank D, Dettwiler S, Friedlein A, Langen H, Keith G, Keller W (2005) A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 3:e189

    Article  PubMed  CAS  Google Scholar 

  • Vasiljeva L, Buratowski S (2006) Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Mol Cell 21:239–248

    Article  CAS  PubMed  Google Scholar 

  • Vasiljeva L, Kim M, Mutschler H, Buratowski S, Meinhart A (2008) The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat Struct Mol Biol 15:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SW, Stevenson AL, Kearsey SE, Watt S, Bahler J (2008) Global role for polyadenylation-assisted nuclear RNA degradation in posttranscriptional gene silencing. Mol Cell Biol 28:656–665

    Article  PubMed  CAS  Google Scholar 

  • Wasmuth EV, Januszyk K, Lima CD (2014) Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA. Nature 511:435–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasmuth EV, Zinder JC, Zattas D, Das M, Lima CD (2017) Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase. Elife 6:e29062

    Article  PubMed  PubMed Central  Google Scholar 

  • Win TZ, Draper S, Read RL, Pearce J, Norbury CJ, Wang SW (2006) Requirement of fission yeast Cid14 in polyadenylation of rRNAs. Mol Cell Biol 26:1710–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittmann S, Renner M, Watts BR, Adams O, Huseyin M, Baejen C, El Omari K, Kilchert C, Heo DH, Kecman T et al (2017) The conserved protein Seb1 drives transcription termination by binding RNA polymerase II and nascent RNA. Nat Commun 8:14861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wlotzka W, Kudla G, Granneman S, Tollervey D (2011) The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO J 30:1790–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyers F, Rougemaille M, Badis G, Rousselle JC, Dufour ME, Boulay J, Regnault B, Devaux F, Namane A, Seraphin B et al (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121:725–737

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457:1033–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita A, Shichino Y, Tanaka H, Hiriart E, Touat-Todeschini L, Vavasseur A, Ding DQ, Hiraoka Y, Verdel A, Yamamoto M (2012) Hexanucleotide motifs mediate recruitment of the RNA elimination machinery to silent meiotic genes. Open Biol 2:120014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshikatsu Y, Ishida Y, Sudo H, Yuasa K, Tsuji A, Nagahama M (2015) NVL2, a nucleolar AAA-ATPase, is associated with the nuclear exosome and is involved in pre-rRNA processing. Biochem Biophys Res Commun 464:780–786

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhu J, Schermann G, Ohle C, Bendrin K, Sugioka-Sugiyama R, Sugiyama T, Fischer T (2015) The fission yeast MTREC complex targets CUTs and unspliced pre-mRNAs to the nuclear exosome. Nat Commun 6:7050

    Article  PubMed  Google Scholar 

  • Zinder JC, Lima CD (2017) Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev 31:88–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinder JC, Wasmuth EV, Lima CD (2016) Nuclear RNA exosome at 3.1 A reveals substrate specificities, RNA paths, and allosteric inhibition of Rrp44/Dis3. Mol Cell 64:734–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torben Heick Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmid, M., Jensen, T.H. (2019). The Nuclear RNA Exosome and Its Cofactors. In: Oeffinger, M., Zenklusen, D. (eds) The Biology of mRNA: Structure and Function . Advances in Experimental Medicine and Biology, vol 1203. Springer, Cham. https://doi.org/10.1007/978-3-030-31434-7_4

Download citation

Publish with us

Policies and ethics