Skip to main content

Provenance in Databases: Principles and Applications

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11810))

Abstract

Data provenance is extra information computed during query evaluation over databases, which provides additional context about query results. Several formal frameworks for data provenance have been proposed, in particular based on provenance semirings. The provenance of a query can be computed in these frameworks for a variety of query languages. Provenance has applications in various settings, such as probabilistic databases, view maintenance, or explanation of query results. Though the theory of provenance semirings has mostly been developed in the setting of relational databases, it can also apply to other data representations, such as XML, graph, and triple-store databases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Boston (1995)

    MATH  Google Scholar 

  2. Amer, K.: Equationally complete classes of commutative monoids with monus. Algebra Universalis 18(1), 129–131 (1984)

    Article  MathSciNet  Google Scholar 

  3. Amsterdamer, Y., Deutch, D., Tannen, V.: Provenance for aggregate queries. In: PODS (2011)

    Google Scholar 

  4. Arab, B.S., Feng, S., Glavic, B., Lee, S., Niu, X., Zeng, Q.: GProM - a swiss army knife for your provenance needs. IEEE Data Eng. Bull. 41(1), 51–62 (2018)

    Google Scholar 

  5. Buneman, P., Khanna, S., Tan, W.C.: Why and where: a characterization of data provenance. In: ICDT (2001)

    Google Scholar 

  6. Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations through views. In: PODS (2002)

    Google Scholar 

  7. Chapman, A., Jagadish, H.V.: Why not? In: SIGMOD (2009)

    Google Scholar 

  8. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: why, how, and where. Found. Trends Databases 1(4), 379–474 (2009)

    Article  Google Scholar 

  9. Damásio, C.V., Analyti, A., Antoniou, G.: Provenance for SPARQL queries. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 625–640. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-1_39

    Chapter  Google Scholar 

  10. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17(1), 229–264 (2002)

    Article  MathSciNet  Google Scholar 

  11. Davidson, S.B., et al.: Provenance in scientific workflow systems. IEEE Data Eng. Bull. 30(4), 44–50 (2007)

    Google Scholar 

  12. Deutch, D., Milo, T., Roy, S., Tannen, V.: Circuits for Datalog provenance. In: ICDT (2014)

    Google Scholar 

  13. Foster, J.N., Green, T.J., Tannen, V.: Annotated XML: queries and provenance. In: PODS (2008)

    Google Scholar 

  14. Geerts, F., Poggi, A.: On database query languages for K-relations. J. Appl. Logic 8(2), 173–185 (2010)

    Article  MathSciNet  Google Scholar 

  15. Geerts, F., Unger, T., Karvounarakis, G., Fundulaki, I., Christophides, V.: Algebraic structures for capturing the provenance of SPARQL queries. J. ACM 63(1), 7 (2016)

    Article  MathSciNet  Google Scholar 

  16. Glavic, B., Alonso, G.: Perm: processing provenance and data on the same data model through query rewriting. In: ICDE, pp. 174–185 (2009)

    Google Scholar 

  17. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS (2007)

    Google Scholar 

  18. Green, T.J., Tannen, V.: Models for incomplete and probabilistic information. IEEE Data Eng. Bull. 29(1), 17–24 (2006)

    Google Scholar 

  19. Imielinski, T., Lipski Jr., W.: Incomplete information in relational databases. J. ACM 31(4), 761–791 (1984)

    Article  MathSciNet  Google Scholar 

  20. Ramusat, Y., Maniu, S., Senellart, P.: Semiring provenance over graph databases. In: TaPP (2018)

    Google Scholar 

  21. Senellart, P.: Provenance and probabilities in relational databases: from theory to practice. SIGMOD Rec. 46(4), 5–15 (2017)

    Article  MathSciNet  Google Scholar 

  22. Senellart, P., Jachiet, L., Maniu, S., Ramusat, Y.: ProvSQL: provenance and probability management in PostgreSQL. PVLDB 11(12), 2034–2037 (2018)

    Google Scholar 

  23. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Morgan & Claypool (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Senellart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Senellart, P. (2019). Provenance in Databases: Principles and Applications. In: Krötzsch, M., Stepanova, D. (eds) Reasoning Web. Explainable Artificial Intelligence. Lecture Notes in Computer Science(), vol 11810. Springer, Cham. https://doi.org/10.1007/978-3-030-31423-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31423-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31422-4

  • Online ISBN: 978-3-030-31423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics