Skip to main content

Chapter 11: Particles in Biopharmaceuticals: Causes, Characterization, and Strategy

  • Chapter
  • First Online:
Development of Biopharmaceutical Drug-Device Products

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 35))

  • 2770 Accesses

Abstract

Biopharmaceutical companies are required to control subvisible and visible particles in their products to ensure a consistent manufacturing process, assess product quality, as well as address potential safety concerns. Subvisible particles cover the size range between 1 and 100 μm, while particles >100 μm are generally considered to be visible [1]. According to USP guidelines, particles are classified into three different categories, namely, extrinsic, intrinsic, and inherent particles [1]. Extrinsic particles are defined as foreign particles unrelated to the manufacturing process, while intrinsic particles arise from the manufacturing process or primary packaging. Inherent particles can result from drug product degradation and can contain proteinaceous and/or other formulation components [2]. These three particle types are associated with different risk profiles, and an appropriate risk and safety assessment must be performed in order to set up an appropriate control strategy. In general, occurrence of extrinsic particles should be eliminated, and intrinsic particle types must be monitored/controlled to minimize their occurrence, while potential inherent particles must be well characterized and their presence justified and monitored/controlled over the product shelf life [3]. Thus, unless otherwise stated, hereafter the main focus will be given to the inherent particle type. In the last few years, more occurrences of inherent particles such as proteinaceous or fatty acid particles have prompted companies to develop more complex and risk-based control systems to control levels of these specific particle types. For this, general safety assessments based on prior knowledge and clinical experience with such inherent particles are required to demonstrate patient safety and guarantee product quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mach H, Bhambhani A, Meyer BK, Burek S, Davis H, Blue JT, et al. The use of flow cytometry for the detection of subvisible particles in therapeutic protein formulations. J Pharm Sci. 2011;100(5):1671–8.

    Article  CAS  Google Scholar 

  2. Saggu M, Liu J, Patel A. Identification of subvisible particles in biopharmaceutical formulations using Raman spectroscopy provides insight into polysorbate 20 degradation pathway. Pharm Res. 2015;32(9):2877–88.

    Article  CAS  Google Scholar 

  3. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh CR, Winter G, et al. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98(4):1201–5.

    Article  CAS  Google Scholar 

  4. Labrenz SR. Ester hydrolysis of polysorbate 80 in mAb drug product: evidence in support of the hypothesized risk after the observation of visible particulate in mAb formulations. J Pharm Sci. 2014;103(8):2268–77.

    Article  CAS  Google Scholar 

  5. Boll B, Bessa J, Folzer E, Quiroz AR, Schmidt R, Bulau P, et al. Extensive chemical modifications in the primary protein structure of IgG1 subvisible particles are necessary for breaking immune tolerance. Mol Pharm. 2017;14(4):1292–9.

    Article  CAS  Google Scholar 

  6. Singh SK, Afonina N, Awwad M, Bechtold-Peters K, Blue JT, Chou D, et al. An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci. 2010;99(8):3302–21.

    Article  CAS  Google Scholar 

  7. Shieh IC, Patel AR. Predicting the agitation-induced aggregation of monoclonal antibodies using surface tensiometry. Mol Pharm. 2015;12(9):3184–93.

    Article  CAS  Google Scholar 

  8. Khan T, Mahler H-C, Kishore SR. Key interactions of surfactants in therapeutic protein formulations: a review. Eur J Pharm Biopharm. 2015;97:60.

    Google Scholar 

  9. Kishore RK, Kiese S, Fischer S, Pappenberger A, Grauschopf U, Mahler H-C. The degradation of Polysorbates 20 and 80 and its potential impact on the stability of biotherapeutics. Pharm Res. 2011;28(5):1194–210.

    Article  CAS  Google Scholar 

  10. Bessa J, Boeckle S, Beck H, Buckel T, Schlicht S, Ebeling M, et al. The immunogenicity of antibody aggregates in a novel transgenic mouse model. Pharm Res. 2015;32(7):2344–59.

    Article  CAS  Google Scholar 

  11. Filipe V, Jiskoot W, Basmeleh AH, Halim A, Schellekens H, Brinks V. Immunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic mice. MAbs. 2012;4(6):740–52.

    Article  Google Scholar 

  12. Bi V, Jawa V, Joubert MK, Kaliyaperumal A, Eakin C, Richmond K, et al. Development of a human antibody tolerant mouse model to assess the immunogenicity risk due to aggregated biotherapeutics. J Pharm Sci. 2013;102(10):3545–55.

    Article  CAS  Google Scholar 

  13. Zolls S, Tantipolphan R, Wiggenhorn M, Winter G, Jiskoot W, Friess W, et al. Particles in therapeutic protein formulations, part 1: overview of analytical methods. J Pharm Sci. 2012;101(3):914–35.

    Article  Google Scholar 

  14. Barnard JG, Rhyner MN, Carpenter JF. Critical evaluation and guidance for using the Coulter method for counting subvisible particles in protein solutions. J Pharm Sci. 2012;101(1):140–53.

    Article  CAS  Google Scholar 

  15. Demeule B, Messick S, Shire SJ, Liu J. Characterization of particles in protein solutions: reaching the limits of current technologies. AAPS J. 2010;12(4):708–15.

    Article  CAS  Google Scholar 

  16. Saggu M, Patel AR, Koulis T. A random forest approach for counting silicone oil droplets and protein particles in antibody formulations using flow microscopy. Pharm Res. 2017;34(2):479–91.

    Article  CAS  Google Scholar 

  17. Zhou C, Krueger AB, Barnard JG, Qi W, Carpenter JF. Characterization of nanoparticle tracking analysis for quantification and sizing of submicron particles of therapeutic proteins. J Pharm Sci. 2015:n/a–a.

    Google Scholar 

  18. Patel AR, Lau D, Liu J. Quantification and characterization of micrometer and submicrometer subvisible particles in protein therapeutics by use of a suspended microchannel resonator. Anal Chem. 2012;84(15):6833–40.

    Article  CAS  Google Scholar 

  19. Valeur E, Gueret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, et al. New modalities for challenging targets in drug discovery. Angew Chem Int Ed Engl. 2017;56(35):10294–323.

    Article  CAS  Google Scholar 

  20. Manning M, Patel K, Borchardt R. Stability of protein pharmaceuticals. Pharm Res. 1989;6(11):903–18.

    Article  CAS  Google Scholar 

  21. Mach H, Arvinte T. Addressing new analytical challenges in protein formulation development. Eur J Pharm Biopharm. 2011;78(2):196–207.

    Article  CAS  Google Scholar 

  22. Ríos QA, Lamerz J, Da Cunha T, Boillon A, Adler M, Finkler C, et al. Factors governing the precision of subvisible particle measurement methods-a case study with a low-concentration therapeutic protein product in a prefilled syringe. Pharm Res. 2015;33:450.

    Article  Google Scholar 

  23. McCrone WC. The particle atlas; an encyclopedia of techniques for small particle identification [by] Walter C. McCrone [and] John Gustav Delly . Delly JG, Palenik SJ, editors. Ann Arbor: Ann Arbor Science Publishers; 1973.

    Google Scholar 

  24. USP <1787> Subvisible Particulate Matter in Therapeutic Protein Injections.

    Google Scholar 

  25. Rosenberg AS. Immunogenicity of biological therapeutics: a hierarchy of concerns. Dev Biol. 2003;112:15–21.

    CAS  Google Scholar 

  26. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJA, Middaugh CR, Winter G, Fan Y-X, Kirshner S, Verthelyi D, Kozlowski S, Clouse KA, Swann PG, Rosenberg A, Cherney B. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98(4):1201–5.

    Article  CAS  Google Scholar 

  27. Narhi LO, Schmit J, Bechtold-Peters K, Sharma D. Classification of protein aggregates. J Pharm Sci. 2012;101(2):493–8.

    Article  CAS  Google Scholar 

  28. Johns J, Golfetto P, Bush T, Fantozzi G, Shabushnig J, Perry A, et al. Achieving “zero” defects for visible particles in injectables. PDA J Pharm Sci Technol. 2018;72(6):640–50.

    Article  Google Scholar 

  29. Mathonet S, Mahler HC, Esswein ST, Mazaheri M, Cash PW, Wuchner K, et al. A biopharmaceutical industry perspective on the control of visible particles in biotechnology-derived injectable drug products. PDA J Pharm Sci Technol. 2016;70(4):392–408.

    Article  CAS  Google Scholar 

  30. USP <1790> Visual Inspection of Injections.

    Google Scholar 

  31. Knapp JZ, Kushner HK. Generalized methodology for evaluation of parenteral inspection procedures. J Parenter Drug Assoc. 1980;34(1):14–61.

    CAS  PubMed  Google Scholar 

  32. Hindelang F, Roggo Y, Zurbach R. Forensic investigation in the pharmaceutical industry: identification procedure of visible particles in (drug) solutions and different containers by combining vibrational and X-ray spectroscopic techniques. J Pharm Biomed Anal. 2018;148:334–49.

    Article  CAS  Google Scholar 

  33. Loosli V, Germershaus O, Steinberg H, Dreher S, Grauschopf U, Funke S. Methods to determine the silicone oil layer thickness in sprayed-on siliconized syringes. PDA J Pharm Sci Technol. 2018;72(3):278–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anacelia Ríos Quiroz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Messick, S., Saggu, M., Ríos Quiroz, A. (2020). Chapter 11: Particles in Biopharmaceuticals: Causes, Characterization, and Strategy. In: Jameel, F., Skoug, J., Nesbitt, R. (eds) Development of Biopharmaceutical Drug-Device Products. AAPS Advances in the Pharmaceutical Sciences Series, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-31415-6_11

Download citation

Publish with us

Policies and ethics