Skip to main content

Abstract

Nanotechnology is applied in many topics of health sections with great benefits for humans. The concern with bacterial resistance has abruptly increased and the number of infections caused by multidrug-resistant (MDR) bacteria today is very high. Extending this problem, there is a struggle in developing new efficient antimicrobials. As an alternative solution, different nanoparticles have been studied to be used as antimicrobials due their promising activity and potentialized biological properties. Several studies about antimicrobials and nanotechnology have showed that nanocrystals can act as antimicrobial against different microorganisms such as bacteria, fungi and protozoa, including MDR bacteria. Some nanocrystalline metals have been applied in materials for wound care such as gold and silver nanocrystals in biomedical applications. Cellulose nanocrystals have exhibited antimicrobial properties in different materials such as food-packaging against important foodborne pathogens. Another aspect is about experimental methods for evaluation of antimicrobial activity of nanoparticles, including nanocrystals. The analysis of this antimicrobial effect is associated with chemical and physical properties of nanomaterials that can be affected depending on synthesis and kind of compounds. The study of the antimicrobial properties of nanocrystals is important for prevention of human infections, and development of new alternatives and strategies to control of pathogens as well as bacterial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, J.W.: History of the medical use of silver. Surg. Infect. 10, 289–292 (2009). https://doi.org/10.1089/sur.2008.9941

    Article  Google Scholar 

  2. André, R.S., Zamperini, C.A., Mima, E.G., Longo, V.M., Albuquerque, A.R., Sambrano, J.R., Longo, E.: Antimicrobial activity of TiO2:Ag nanocrystalline heterostructures: experimental and theoretical insights. Chem. Phys. 459, 87–95 (2015). https://doi.org/10.1016/j.chemphys.2015.07.020

    Article  Google Scholar 

  3. Azaroff, L.V.: Elements of X-ray crystallography. McGraw-Hill, New York (1968)

    Google Scholar 

  4. Azizi, S., Ahmad, M., Mahdavi, M., Abdolmohammadi, S.: Preparation, characterization, and antimicrobial activities of ZnO nanoparticles/cellulose nanocrystal nanocomposites. BioResources 8(2) (2013). https://doi.org/10.15376/biores.8.2.1841-1851

  5. Bai, L., Ouyang, Y., Song, J., Xu, Z., Liu, W., Hu, J., Wang, Y., Yuan, F.: Synthesis of metallic nanocrystals: from noble metals to base metals. Materials 12(9), 1497 (2019). https://doi.org/10.3390/ma12091497

    Article  Google Scholar 

  6. Blanco, A., et al.: Nanocellulose for industrial use: cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC). Handbook of Nanomaterials for Industrial Applications, pp. 74–126 (2018)

    Google Scholar 

  7. Börjesson, M., et al.: Increased thermal stability of nanocellulose composites by functionalization of the sulfate groups on cellulose nanocrystals with azetidinium ions. J. Appl. Polym. Sci. 135(10), 45963 (2018)

    Article  Google Scholar 

  8. Cyoia, P.S., Koga, V.L., Nishio, E.K., Houle, S., Dozois, C.M., Brito, K.C.T., Brito, B.G., Nakazato, G., Kobayashi, R.K.T.: Distribution of ExPEC virulence factors, blaCTX-M, fosA3, and mcr-1 in Escherichia coli isolated from commercialized chicken carcasses. Front. Microbiol. 9, 3254 (2019)

    Article  Google Scholar 

  9. D’Costa, V.M., et al.: Antibiotic resistance is ancient. Nature 477, 457–461 (2011). https://doi.org/10.1038/nature10388

    Article  Google Scholar 

  10. Davies, L.M., Harris, P.J.: Atomic force microscopy of microfibrils in primary cell walls. Planta 217(2), 283–289 (2003)

    Article  Google Scholar 

  11. De Souza Lima, M.M., Borsali, R.: Rodlike cellulose microcrystals: structure, properties, and applications. Macromol. Rapid Commun. 25(7), 771–787 (2004)

    Article  Google Scholar 

  12. Dhand, C., Dwivedi, N., Loh, X. J., Jie Ying, A.N., Verma, N.K., Beuerman, R.W., Lakshminarayanan, R., Ramakrishna, S.: Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Advances 5(127), 105003–105037 (2015). https://doi.org/10.1039/c5ra19388e.

    Article  Google Scholar 

  13. Diaz, J.A., et al.: Thermal expansion of self-organized and shear-oriented cellulose nanocrystal films. Biomacromolecules 14(8), 2900–2908 (2013)

    Article  Google Scholar 

  14. Doblin, M.S., et al.: Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol. 43(12), 1407–1420 (2002)

    Article  Google Scholar 

  15. Dollwet, H.H.A., Sorenson, J.R.J.: Historic use of copper-compounds in medicine. Trace Elem. Med. 2, 80–87 (1985)

    Google Scholar 

  16. Dong, Y.Y., Liu, S., Liu, Y.J., Meng, L.Y., Ma, M.G.: Ag@Fe3O4@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution. J. Mater. Sci. 52(13), 8219–8230 (2017). https://doi.org/10.1007/s10853-017-1038-1

    Article  Google Scholar 

  17. Dutta, G., Das, N., Adhya, A., Munian, K., Majumdar, B.K.: Nanocrystalline silver gel versus conventional silver sulfadiazine cream as topical dressing for second-degree burn wound: a clinicopathological comparison. Indian J. Burns 26, 29–37 (2018). https://doi.org/10.4103/ijb.ijb_9_18

    Article  Google Scholar 

  18. Duval, R.E., Grare, M., Demoré, B.: Fight against antimicrobial resistance: we always need new antibacterials but for right bacteria. Molecules 24, 3152 (2019)

    Article  Google Scholar 

  19. Elazzouzi-Hafraoui, S., et al.: The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1), 57–65 (2008)

    Article  Google Scholar 

  20. Endes, C., et al.: Risk assessment of released cellulose nanocrystals – mimicking inhalatory exposure. J. Phys: Conf. Ser. 429(1), 012008 (2013)

    Google Scholar 

  21. Espinosa, E., et al.: Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process. J. Clean. Prod. 239, 118083 (2019)

    Article  Google Scholar 

  22. Fang, G., Li, W., Shen, X., Perez-Aguilar, J.M., Chong, Y., Gao, X., Chai, Z., Chen, C., Ce, C., Zhou, R.: Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat. Commun. 9(1) (2018). https://doi.org/10.1038/s41467-017-02502-3

  23. Faria-Tischer, P.C.S., Ribeiro-Viana, R.M., Tischer, C.A.: Bio-based nanocomposites. In: Grumezescu, V., Grumezescu, A.M. (eds.) Materials for Biomedical Engineering, pp. 205–244. Elsevier, Amsterdan (2019)

    Chapter  Google Scholar 

  24. Festucci-Buselli, R.A., Otoni, W.C., Joshi, C.P.: Structure, organization, and functions of cellulose synthase complexes in higher plants. Braz. J. Plant. Physiol. 19(1), 1–13 (2007)

    Article  Google Scholar 

  25. Fricker, S.P.: Medical uses of gold compounds: past, present and future. Gold Bull. 29, 53 (1996). https://doi.org/10.1007/BF03215464

    Article  Google Scholar 

  26. Garino, N., Sanvitale, P., Dumontel, B., Laurenti, M., Colilla, M., Izquierdo-Barba, I., Cauda, V., Vallet-Regì, M.: Zinc oxide nanocrystals as a nanoantibiotic and osteoinductive agent. RSC Adv. 9(20), 11312–11321 (2019). https://doi.org/10.1039/c8ra10236h

    Article  Google Scholar 

  27. Gilbert, R.D.: Cellulose and cellulose derivatives as liquid crystals. In: [s.l: s.n.], pp. 259–272 (1990)

    Google Scholar 

  28. Hu, W., et al.: Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr. Polym. 101, 1043–1060 (2014)

    Article  Google Scholar 

  29. Isogai, A.: Development of completely dispersed cellulose nanofibers. Proc. Jpn. Acad. Ser. B: Phys. Biol. Sci. (2018). Available from: https://pdfs.semanticscholar.org/0006/20e05de074056cded8979cdc12b98feabbf2.pdf. Accessed 31 Aug 2019

  30. Jiang, Q., et al.: Photothermally active reduced graphene oxide/bacterial nanocellulose composites as biofouling-resistant ultrafiltration membranes. Environ. Sci. Technol. 53(1), 412–421 (2019)

    Article  Google Scholar 

  31. Klemm, D., et al.: Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011)

    Article  Google Scholar 

  32. Klemm, D., et al.: Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater. Today 21(7), 720–748 (2018)

    Article  MathSciNet  Google Scholar 

  33. Koga, V.L., Maluta, R.P., da Silveira, W.D., Ribeiro, R.A., Hungria, M., Vespero, E.C., Nakazato, G., Kobayashi, R.K.T.: Characterization of CMY-2-type beta-lactamase-producing Escherichia coli isolated from chicken carcasses and human infection in a city of South Brazil. BMC Microbiol. 19(1), 174 (2019). https://doi.org/10.1186/s12866-019-1550-3. PMID: 31362706; PMCID: PMC6664532

    Article  Google Scholar 

  34. Kovalenko, M.V., Manna, L., Cabot, A., Hens, Z., Talapin, D.V., Kagan, C.R., Klimov, V.L., Rogach, A.L., Reiss, P., Milliron, D.J., Guyot-Sionnnest, P., Konstantatos, G., Parak, W.J., Hyeon, T., Korgel, B.A., Murray, C.A., Heiss, W.: Prospects of nanoscience with nanocrystals. ACS Nano 9(2), 1012–1057 (2015). https://doi.org/10.1021/nn506223h

    Article  Google Scholar 

  35. Lin, N., Dufresne, A.: Nanocellulose in biomedicine: current status and future prospect. Eur. Polym. J. 59, 302–325 (2014)

    Article  Google Scholar 

  36. Mageshwari, K., Sathyamoorthy, R.: Flower-shaped CuO nanostructures: synthesis, characterization and antimicrobial activity. J. Mater. Sci. Technol. 29(10), 909–914 (2013). https://doi.org/10.1016/j.jmst.2013.04.020

    Article  Google Scholar 

  37. Metreveli, G., et al.: A size-exclusion nanocellulose filter paper for virus removal. Adv. Healthc. Mater. 3(10), 1546–1550 (2014)

    Article  Google Scholar 

  38. Modena, M.M., Rühle, B., Burg, T.P., Wuttke, S. Nanoparticle characterization: what to measure? Adv. Mater. 1901556 (2019). https://doi.org/10.1002/adma.201901556

  39. Moreau, C., et al.: Tuning supramolecular interactions of cellulose nanocrystals to design innovative functional materials. Ind. Crops Prod. 93, 96–107 (2016)

    Article  Google Scholar 

  40. Moura, J.V.B., Freitas, T.S., Silva, A.R.P., Santos, A.T.L., da Silva, J.H., Cruz, R.P., Coutinho, H.D.M.: Synthesis, characterizations, and antibacterial properties of PbMoO4 nanocrystals. Arab. J. Chem. 11(6), 739–746 (2017). https://doi.org/10.1016/j.arabjc.2017.12.014

    Article  Google Scholar 

  41. Nainggolan, H., et al.: Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite. Beilstein J. Nanotechnol. 4(1), 325–329 (2013)

    Article  Google Scholar 

  42. OECD: Stemming the superbug tide: just a few dollars more. OECD Health Policy Studies, OECD Publishing, Paris (2018). https://doi.org/10.1787/9789264307599-en

  43. Oehme, D.P., et al.: Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations. Plant Physiol. 168(1), 3–17 (2015)

    Article  Google Scholar 

  44. O’Neill, J.: Review on Antimicrobial Resistance. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations (2016). Available from: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf. Accessed 2 Sept 2019

  45. Peng, B., Zhang, X., Aarts, D.G.A.L., Dullens, R.P.A.: Superparamagnetic nickel colloidal nanocrystal clusters with antibacterial activity and bacteria binding ability. Nat. Nanotechnol. 13(6), 478–482 (2018). https://doi.org/10.1038/s41565-018-0108-0

    Article  Google Scholar 

  46. Rajwade, J.M., Paknikar, K.M., Kumbhar, J.V.: Applications of bacterial cellulose and its composites in biomedicine. Applied Microbiology and Biotechnology. Springer, Berlin, Heidelberg (2015). Available from: http://link.springer.com/10.1007/s00253-015-6426-3. Accessed 27 Jun 2017

    Article  Google Scholar 

  47. Rebelo, A., et al.: Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Sci. Technol. Adv. Mater. 19(1), 203–211 (2018)

    Article  Google Scholar 

  48. Römling, U., Galperin, M.Y.: Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol. (2015)

    Google Scholar 

  49. Rongpipi, S., et al.: Progress and opportunities in the characterization of cellulose – an important regulator of cell wall growth and mechanics. Front. Plant Sci. (2019). Available from: https://www.frontiersin.org/article/10.3389/fpls.2018.01894/full. Accessed 30 Aug 2019

  50. Ruditskiy, A., Xia, Y.: The science and art of carving metal nanocrystals. ACS Nano. 11(1), 23–27 (2017). https://doi.org/10.1021/acsnano.6b08556

    Article  Google Scholar 

  51. Schmidt, R., Prado-Gonjal, J., Morán, E.: Microwave-assisted hydrothermal synthesis of nanoparticles. In: Kharisov, B.I., Ortiz-Mendez, O.V.K.U. (eds.) CRC Concise Encyclopedia of Nanotechnology, pp. 585–596. CRC Press Taylor & Francis Group, Boca Raton, FL, USA (2015). ISBN 9781466580343

    Google Scholar 

  52. Shankar, S.S., Deka, S.: Metal nanocrystals and their applications in biomedical systems. Sci. Adv. Mater. 3, 169–19 (2011). https://doi.org/10.1166/sam.2011.1150

    Article  Google Scholar 

  53. Sobhani, A., Salavati-Niasari, M.: Optimized synthesis of ZnSe nanocrystals by hydrothermal method. J. Mater. Sci.: Mater. Electron. 27(1), 293–303 (2015). https://doi.org/10.1007/s10854-015-3753-1

    Article  Google Scholar 

  54. Sorieul, M., et al.: Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials 9(8), 1–36 (2016)

    Article  Google Scholar 

  55. Tavakolian, M., et al.: Developing antibacterial nanocrystalline cellulose using natural antibacterial agents. ACS Appl. Mater. Interfaces 10(40), 33827–33838 (2018)

    Article  Google Scholar 

  56. Taylor, E.N., Kummer, K.M., Durmus, N.G., Leuba, K., Tarquinio, K.M., Webster, T.J.: Superparamagnetic iron oxide nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small 8(19), 3016–3027 (2012). https://doi.org/10.1002/smll.201200575

    Article  Google Scholar 

  57. Theja, G.S., Lowrence, R.C., Ravi, V., Nagarajan, S., Anthony, S.P.: Synthesis of Cu2O micro/nanocrystals with tunable morphologies using coordinating ligands as structure controlling agents and antimicrobial studies. CrystEngComm 16(42), 9866–9872 (2014). https://doi.org/10.1039/c4ce01649a

    Article  Google Scholar 

  58. Tineo, C., Nuñez, C.M., Sosa, O., Pichardo, D., Hernández, J.L., Collado, G.: Effect of the use of silver nanocrystals and silver sulfadiazine in the management of soft tissue lesions. Chronic Wound Care Manag. Res. 4, 17–24 (2016). https://doi.org/10.2147/CWCMR.S120177

    Article  Google Scholar 

  59. Vikesland, P.J., Wigginton, K.R.: Nanomaterial enabled biosensors for pathogen monitoring – a review. Environ. Sci. Technol. 44(10), 3656–3669 (2010). https://doi.org/10.1021/es903704z

    Article  Google Scholar 

  60. Wicholm, K., Larsson, P.T., Iversen, T.: Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr. Res. 312(3), 123–129 (1998)

    Article  Google Scholar 

  61. Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminum and wolfram. Acta Metall. 1, 22–31 (1953)

    Article  Google Scholar 

  62. World Health Organization: WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed (2017). Available from: http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/fr/. Accessed 2 Sept 2019

  63. Xia, Y., Xiong, Y., Lim, B., Skrabalak, S.E.: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Edn. 48(1), 60–103 (2009). https://doi.org/10.1002/anie.200802248

    Article  Google Scholar 

  64. Xiao, Y., et al.: A light-weight and high-efficacy antibacterial nanocellulose-based sponge via covalent immobilization of gentamicin. Carbohydr. Polym. 200, 595–601 (2018)

    Article  Google Scholar 

  65. Xu, X., et al.: Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces 5(8), 2999–3009 (2013)

    Article  Google Scholar 

  66. Zhang, H., et al.: Complete genome sequence of the cellulose-producing strain Komagataeibacter nataicola RZS01. Sci. Rep. 7(1), 1–8 (2017)

    Article  MathSciNet  Google Scholar 

  67. Zhong, H., Mirkovic, T., Scholes, G.D.: Nanocrystal synthesis. Comprehensive Nanoscience and Technology, vol. 5. Academic Press, Amsterdam, The Netherlands, pp. 153–201 (2011). https://doi.org/10.1016/b978-0-12-374396-1.00051-9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerson Nakazato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonçalves, M.C., Tischer, C.A., Kobayashi, R.K.T., Nakazato, G. (2020). Antimicrobial Activity of Nanocrystals. In: La Porta, F., Taft, C. (eds) Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-31403-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31403-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31402-6

  • Online ISBN: 978-3-030-31403-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics