Skip to main content

Effect of Light Stimulation on a Thermo-Cellulolytic Bacterial Consortium Used for the Degradation of Cellulose of Green Coconut Shells

  • Chapter
  • First Online:
Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies

Abstract

The green coconut business is responsible for the generation of large amounts of waste. Sustainable development requires the transformation of such waste into value-added biotechnological products. The aim of this study was to optimize, by photostimulation, the hydrolysis of the coconut biomass. The thermo-cellulolytic consortium was collected from a composting pile, subjected to nutritional stress and irradiated either by Laser (λ660 ηm) or LED (λ632 ± 2 ηm). Microbial quantification after irradiation showed a significant stimulatory biological response. Despite cultures irradiated by LED significantly differed from the Laser-irradiated ones (p < 0.0001) both were significantly different from the control (p < 0.0001). The microbial consortium irradiated either by Laser or LED light showed the increase of RNA production and consequently protein synthesis causing anticipation and increase of the RBBR catabolism. The generation of products by cellulose hydrolysis (TRS and glucose) was significantly higher in the photostimulated groups, being the most effective catabolism observed within the first 48-h in the LED group and, after 144-h, in the Laser group. Photostimulation, especially by LED, might be considered as a booster of the bioprocess at low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Argüello, J.M., Raimunda, D., Padilla-Benavides, T.: Mechanisms of copper homeostasis in bacteria. Front. Cell. Infect. Microbiol. 3, 1–14 (2013). https://doi.org/10.3389/fcimb.2013.00073

    Article  Google Scholar 

  2. Bagnato, V.S., Mariyama, L.T.: Dosimetria na terapia com laser de baixa intensidade. J. Bras. Laser. 1, 26–29 (2007)

    Google Scholar 

  3. Bakr, E.M.: A new soflware for measuring leaf area, and área damaged by Tetranychus uritcae Koch. JEN 129(3), 173–175 (2005). https://doi.org/10.1111/j.1439-0418.2005.00948.x

    Article  Google Scholar 

  4. Bismarck, A., Mohanty, A.K., Aranberri-Askargorta, I., et al.: Surface characterization of natural fibers; surface properties and the water up-take behavior of modified sisal and coir fibers. Green Chem. 3, 100–107 (2001)

    Article  Google Scholar 

  5. Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., Henrissat, B.: The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, 233–238 (2009). https://doi.org/10.1093/nar/gkn663

    Article  Google Scholar 

  6. Chen, W.H., Ye, S.C., Sheen, H.K.: Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl Energy 93, 237–244 (2012). https://doi.org/10.1016/j.apenergy.2011.12.014

    Article  Google Scholar 

  7. Chavantes, M.A., et al.: Laser em Biomedicina Princípios e Praticas. São Paulo (2009)

    Google Scholar 

  8. Crugeira, P.J.L., Pinheiro, A.L.B., Almeida, P.F., et al.: Effects of photostimulation on the catabolic process of xenobiotics. J. Photochem. Photobiol. 191, 38–43 (2019). https://doi.org/10.1016/j.jphotobiol.2018.12.004

    Article  Google Scholar 

  9. Crugeira, P.J.L., Almeida, P.F., Pinheiro, A.L.B., et al.: Photobiological effect of Laser or LED light in a thermophilic microbial consortium. J. Photochem. Photobiol. 181, 115–121 (2018). https://doi.org/10.1016/j.jphotobiol.2018.03.006

    Article  Google Scholar 

  10. Crugeira, P.J.L., Santos, G.M.P., Chinalia, F.A., Almeida, P.F., Pinheiro, A.L.B.: In: Longo, L. (ed.) Advances in Laserology: Selected Papers of Laser Florence 2015, vol. 1, pp. 5–9. Medimond, Bologna. ISBN: 978-88-7587-732-3 (2016)

    Google Scholar 

  11. Cunha, E., Hatem, C., Barrick, D.: Natural and designed enzymes for celulose degradation in advanced biofuels and bioproducts. In: Lee, W.J. (ed.) Advanced Biofuels and Bioproducts, pp. 339–367. Springer, NY (2013). https://doi.org/10.1007/978-1-4614-3348-4

    Google Scholar 

  12. Dacosta, R.S., Andersson, H., Wilson, B.C.: Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy. Photochem. Photobiol. 78(4), 384–392 (2003). https://doi.org/10.1562/0031-8655

    Article  Google Scholar 

  13. Dias, I.F.L., Siqueira, C.P.C.M., Durante, H.: Efeitos da luz em sistemas biológicos. Ciências Exatas e Tecnológicas, Londrina 30(1), 33–40 (2009)

    Article  Google Scholar 

  14. Dobrowolski, J.W., Bedla, D., Czech, T., et al.: Integrated innovative biotechnology for optimization of environmental bioprocesses and a green economy. In: Purohit, J.H., Kalia, V.C., Vaidya, A.N., Khardenavis, A.A. (eds.) Optimization and Applicability of Bioprocesses, pp. 27–72. Springer, Singapore (2017)

    Chapter  Google Scholar 

  15. Gan, Q., Allen, S.J., Taylor, G.: Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling. Process Biochem. 38, 1003–1018 (2003). https://doi.org/10.1016/S0032-9592(02)00220-0

    Article  Google Scholar 

  16. Glenn, J.K., Gold, M.H.: Decolorization of several polymeric dyes by the Lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 45(6), 1741–1747 (1983)

    Article  Google Scholar 

  17. Gonçalves, F., Ruiz, A.H.A., Nogueira, C.C.: Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation stratégies. Fuel 131, 66–76 (2014). https://doi.org/10.1016/j.fuel.2014.04.021

    Article  Google Scholar 

  18. Hemphill, J., Chou, C., Chin, J.W., Deiters, A.: Genetically encoded light-activated transcription for spatio-temporal control of gene expression and gene silencing in mammalian cells. J. Am. Chem. Soc. 135, 13433–13439 (2013). https://doi.org/10.1021/ja4051026

    Article  Google Scholar 

  19. International Conference on Harmonisation. ICH. International council on harmonization of technical requirements for registration of pharmaceuticals for human use. Guidance for industry: Q2B validation of analytical procedures: methodology. Geneva: ICH (1996)

    Google Scholar 

  20. Jensen, E.C.: Quantitative analysis of histological staining and fluorescence using imagej. Anat. Rec. 296, 378–381 (2013). https://doi.org/10.1002/ar.22641

    Article  Google Scholar 

  21. Karu, T.: Low-power laser therapy. In: Vodinh, T. (ed.) Biomedical Photonics Handbook, vol. 48, pp. 1–25. CRC Press, Boca Raton (2003)

    Google Scholar 

  22. Karu, T.: Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol. B 49(1), 1–17 (1999). https://doi.org/10.1016/S1011-1344(98)00219-X

    Article  Google Scholar 

  23. Karu, T.: The Science of low power laser therapy, edn 1, London (1998)

    Google Scholar 

  24. Karu, T.: Photobiological fun-damentals of low-power laser therapy. IEEE J. Quant. Electron. 23, 1703–1717 (1987). https://doi.org/10.1109/JQE.1987.1073236

    Article  Google Scholar 

  25. Karu, T.I., Kolayakov, S.F.: Exact action spectra for cellular responses relevant to phototherapy. Photomed. Laser Surg. 23(4), 355–361 (2005). https://doi.org/10.1089/pho.2005.23.355

    Article  Google Scholar 

  26. Karu, T., Tiphlova, A.O., Letokhov, V.S., Lobko, V.V.: Stimulation of E. coli growth by laser and incoherent red light. Nuovo Cimento D 2(4), 1138–1144 (1983)

    Article  Google Scholar 

  27. Kasten, F.H.: Cytochemical studies with acridine orange and the influence of dye contaminants in the staining of nucleic acids. Int. Rev. Cytol. 21, 141–202 (1967)

    Article  Google Scholar 

  28. Kepner, R.L., Pratt, J.R.: Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol. Rev. 58(4), 603–613 (1994)

    Google Scholar 

  29. Kipshidze, N., Nikolaychi, V., Keelan, M.H., et al.: Low-power helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg. Med. 28(4), 355–364 (2001). https://doi.org/10.1002/lsm.1062

    Article  Google Scholar 

  30. Kopka, B., Magerl, K., Savitsky, A., et al.: Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Sci. Rep. 7, 1–16 (2017). https://doi.org/10.1038/s41598-017-13420-1

    Article  Google Scholar 

  31. Latorre, M., Low, M., Gárate, E., et al.: Interplay between copper and zinc homeostasis through the transcriptional regulator Zur in Enterococcus faecalis. Metallomics 7(7), 1137–1145 (2015). https://doi.org/10.1039/c5mt00043b

    Article  Google Scholar 

  32. Liebert, A.D., Bicknell, B.T., Adams, R.D.: Protein conformational modulation by photons: a mechanism for laser treatment effects. Med. Hypotheses 82, 275–281 (2014). https://doi.org/10.1016/j.mehy.2013.12.009

    Article  Google Scholar 

  33. Lynd, L.R., Weimer, P.J., Zyl, W.H.V., Pretorius, I.S.: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66(3), 506–577 (2002). https://doi.org/10.1128/MMBR.66.3.506-577.2002

    Article  Google Scholar 

  34. Lynd, L.R., Laser, M.S., Bransby, D., et al.: How biotech can transform biofuels. Nat. Biotechnol. 26(2), 169–172 (2008). https://doi.org/10.1038/nbt0208-169

    Article  Google Scholar 

  35. Machado, K.M.G., Matheus, D.R., Bononi, V.L.R.: Ligninolytic enzymes production and remazol brilliant blue R decolourization by tropical brazilian basidiomycetes fungi. Braz. J. Microbiol. 36, 246–252 (2005). https://doi.org/10.1590/S1517-83822005000300008

    Article  Google Scholar 

  36. Menezes, C.R., Silva, I.S., Durrant, L.R.: Bagaço de cana: fonte para produção de enzimas lignocelulolíticas. Estudos tecnológicos. 5(1), 68–78 (2009). https://doi.org/10.4013/ete.2009.51.05

    Article  Google Scholar 

  37. Mood, S.H., Golfeshan, A.H., Tabatabaei, M., et al.: Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 27, 77–93 (2013). https://doi.org/10.1016/j.rser.2013.06.033

    Article  Google Scholar 

  38. Mwaikambo, L.Y., Ansell, M.P.: Chemical modification of hemp, sisal, jute and kapok fibers by alkalization. J. Appl. Polym. Sci. 84(12), 2222–2234 (2002). https://doi.org/10.1002/app.10460

    Article  Google Scholar 

  39. Okino, L.K., Machado, K.M.G., Fabris, C., et al.: Ligninolytic activity of tropical rainforest basidiomycetes. World J. Microbiol. Biotechnol. 16, 889–893 (2000). https://doi.org/10.1023/A:1008983616033

    Article  Google Scholar 

  40. O’neal, M.E., Landis, D.A., Isaacs, R.: An inexpensive, accurate method for measuring leaf area and defoliation through digital image analysis. J. Econ. Entomol. 95(6), 1190–1194 (2002). https://doi.org/10.1603/0022-0493-95.6.1190

    Article  Google Scholar 

  41. Pereira, P.R., Paula, J.B., Bahten, L.C.: Efeitos do Laser de baixa intensidade em cultura bacteriana in vitro e ferida infectada in vivo. Revista do Colégio Brasileiro de Cirurgiões, vol. 41, n 1, Rio de Janeiro (2014). http://dx.doi.org/10.1590/S0100-69912014000100010

  42. Pedersen, M., Meyer, A.S.: Lignocellulose pretreatment severity—relating pH to biomatrix opening. New Biotechnol. 27, 739–750 (2010). https://doi.org/10.1016/j.nbt.2010.05.003

    Article  Google Scholar 

  43. Sukumaran, R.K., Singhania, R.R., Mathew, G.M., et al.: Cellulase production using biomass feed stock and its application in lignocelluloses saccharification for bio-ethanol production. Renew. Energy 34, 421–424 (2009). https://doi.org/10.1016/j.renene.2008.05.008

    Article  Google Scholar 

  44. Teather, R.M., Wood, P.J.: Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43, 777–780 (1982)

    Article  Google Scholar 

  45. Ueda, M., Goto, T., Nakazawa, M., et al.: A novel cold-adapted cellulase complex from Eisenia foetida: characterization of a multienzyme complex with carboxymethycellulose, β-glucosidase, β 1,3 glucanase and β-xylosidase. Comp. Biochem. Physiol. Part B 157, 26–32 (2010). https://doi.org/10.1016/j.cbpb.2010.04.014

    Article  Google Scholar 

  46. Van aken, B., Agthos, S.N.: Implications of manganese (III), oxalate, and oxygen in the degradation of nitroaromatic compounds by manganese peroxidase (MnP). Adv. Appl. Microbiol. 58, 345–351 (2002). https://doi.org/10.1007/s00253-001-0888-1

    Article  Google Scholar 

  47. Vasconcelos, N.M., Pinto, G.A.S., Aragão, F.A.S.: Determinação de Açúcares Redutores pelo Ácido 3,5-Dinitrosalicílico. Bol. Pesquisa e Desenvolvimento 88, Embrapa, 10–22 (2013)

    Google Scholar 

  48. Wang, W., Wildes, C.P., Pattarabanjird, T., et al.: A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. Nat. Biotechnol. 35, 864–871 (2017). https://doi.org/10.1038/nbt.3909

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Jorge Louro Crugeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crugeira, P.J.L., Chinalia, F.A., Brandão, H.N., Matos, J.B.T.L., Pinheiro, A.L.B., Almeida, P.F. (2020). Effect of Light Stimulation on a Thermo-Cellulolytic Bacterial Consortium Used for the Degradation of Cellulose of Green Coconut Shells. In: La Porta, F., Taft, C. (eds) Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-31403-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31403-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31402-6

  • Online ISBN: 978-3-030-31403-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics