Skip to main content

Abstract

Extensive research on ferrite-based materials and their application in field of electronics is of great importance in near future. In the last decade, several experiments have been conducted for developing different forms of ferrite-based materials through controlling its size, composition, and morphology. Such studies indicate that the chemical and physical properties of these materials can in principle be manipulated based on the desired application and are highly relevant from the technological point of view. However, the relationship between the closed structure and the composition of these advanced nanoscale materials is still debatable. In this chapter, the chemical structure of spinel ferrite nanoparticles has been studied using crystal engineering. It is quite evident that the change in the morphology of its particles and in the degree of defects alter their magnetic, optical and catalytic properties significantly. This makes these materials suitable for use in electronic devices such as high-density recording media and as a medical guide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naseri, M.G., Saion, E.B., Ahangar, H.A., Hashim, M., Shaari, A.H.: Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method. Powder Technol. 212(1), 80–88 (2011)

    Article  Google Scholar 

  2. Editors of Encyclopaedia Britannica: Ferrite—Iron Oxide Compound [Online]. Available: https://www.britannica.com/science/ferrite-iron-oxide-compound

  3. Joy, D.C.: Chemical analysis of ferrites. Talanta Rev. 30, 299–315 (1983)

    Article  Google Scholar 

  4. Chen, C.H.: Magnetism and Metallurgy of Solt Magnetic Materials. Courier Dover Publications (1986)

    Google Scholar 

  5. Cullity, B.D.: Introduction to Magnetic Materials. Addison-Wesley, MA (1972)

    Google Scholar 

  6. Griffiths, D.J.: Introdution to Electrodynamics, 3rd edn. N. J. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  7. Jiles, D.: Introduction to Magnetism and Magnetic Materials (1991)

    Chapter  Google Scholar 

  8. Moskowitz, B.M.: Hitchhiker Guide to Magnetism, 3rd edn. (2006)

    Google Scholar 

  9. Sinnecker, J., Grossinger, R., Turtelli, R.S., Exel, G., Greifeneder, G., Kuss, C.: J. Magn. Magn. Mater., 194 (1994)

    Google Scholar 

  10. Hsu, C., McGuire, T.R.: Magnetism and Magnetic Materials. Academic Press, New York (1968)

    Google Scholar 

  11. Airimioaei, M., et al.: Synthesis and functional properties of the Ni1−xMnxFe2O4 ferrites. J. Alloys Compd. 509(31), 8065–8072 (2011)

    Article  Google Scholar 

  12. González-Carreño, T., Morales, M.P., Serna, C.J.: Barium ferrite nanoparticles prepared directly by aerosol pyrolysis. Mater. Lett. 43(3), 97–101 (2000)

    Article  Google Scholar 

  13. Bate, G.: Magnetic recording materials since 1975. J. Magn. Magn. Mater. 100(1–3), 413–424 (1991)

    Article  Google Scholar 

  14. Joseyphus, R.J., Narayanasamy, A., Nigam, A.K., Krishnan, R.: Effect of mechanical milling on the magnetic properties of garnets. J. Magn. Magn. Mater. 296(1), 57–64 (2006)

    Article  Google Scholar 

  15. Garskaite, E., et al.: On the synthesis and characterization of iron-containing garnets (Y3Fe5O12, YIG and Fe3Al5O12, IAG). Chem. Phys. 323(2–3), 204–210 (2006)

    Article  Google Scholar 

  16. Niaz Akhtar, M., et al.: Y3Fe5O12 nanoparticulate garnet ferrites: comprehensive study on the synthesis and characterization fabricated by various routes. J. Magn. Magn. Mater. 368, 393–400 (2014)

    Article  Google Scholar 

  17. Andersen, H.L., Saura-Múzquiz, M., Granados-Miralles, C., Canévet, E., Lock, N., Christensen, M.: Crystalline and magnetic structure-property relationship in spinel ferrite nanoparticles. Nanoscale 10(31), 14902–14914 (2018)

    Article  Google Scholar 

  18. Lazarević, Z.Ž., et al.: Nanodimensional spinel NiFe2O4 and ZnFe2O4 ferrites prepared by soft mechanochemical synthesis. J. Appl. Phys. 113(18), 0–11 (2013)

    Article  Google Scholar 

  19. Smit, J.: Ferrites: Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Application (1959)

    Google Scholar 

  20. Zhang, Y., Shi, Q., Schliesser, J., Woodfield, B.F., Nan, Z.: Magnetic and thermodynamic properties of nanosized Zn ferrite with normal spinal structure synthesized using a facile method. Inorg. Chem. 53(19), 10463–10470 (2014)

    Article  Google Scholar 

  21. Thomas, J.J., Shinde, A.B., Krishna, P.S.R., Kalarikkal, N.: Temperature dependent neutron diffraction and Mössbauer studies in zinc ferrite nanoparticles. Mater. Res. Bull. 48(4), 1506–1511 (2013)

    Article  Google Scholar 

  22. Pottker, W.E., et al.: Influence of order-disorder effects on the magnetic and optical properties of NiFe2O4 nanoparticles. Ceram. Int. 44(14), 17290–17297 (2018)

    Article  Google Scholar 

  23. Chen, D., Chen, D., Jiao, X., Zhao, Y., He, M.: Hydrothermal synthesis and characterization of octahedral nickel ferrite particles. Powder Technol. 133(1–3), 247–250 (2003)

    Article  Google Scholar 

  24. Sutka, A., Mezinskis, G.: Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front. Mater. Sci. 6(2), 128–141 (2012)

    Article  Google Scholar 

  25. Hessien, M.M., Rashad, M.M., El-Barawy, K.: Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method. J. Magn. Magn. Mater. 320(3–4), 336–343 (2008)

    Article  Google Scholar 

  26. Chen, D., Jiao, X., Cheng, G.: Hydrothermal synthesis of zinc oxide powders with different morphologies. Solid State Commun. 113(6), 363–366 (1999)

    Article  Google Scholar 

  27. Sapieszko, R.S., Matijevic, E.: Preparation of well defined colloidal particles by thermal decomposition of metal chelates—2. Cobalt and nickel. Corrosion 36(10), 522–530 (1980)

    Article  Google Scholar 

  28. Dell’Agli, G.M.G.: Hydrothermal synthesis of ZrO2-Y2O3 solid solutions at low temperature. J. Eur. Ceram. Soc. 20, 139–145 (2000)

    Article  Google Scholar 

  29. Burda, C., Chen, X., Narayanan, R., El-sayed, M.A.: Chemistry and Properties of Nanocrystals of Different Shapes (2005)

    Google Scholar 

  30. Wang, X., Zhuang, J., Peng, Q., Li, Y.: A general strategy for nanocrystal synthesis. Nature 437(7055), 121–124 (2005)

    Article  Google Scholar 

  31. Lu, A.H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46(8), 1222–1244 (2007)

    Article  Google Scholar 

  32. Wang, J.: Prepare highly crystalline NiFe2O4 nanoparticles with improved magnetic properties. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 127(1), 81–84 (2006)

    Article  Google Scholar 

  33. Xie, H., Shen, D., Wang, X., Shen, G.: Microwave hydrothermal synthesis and visible-light photocatalytic activity of γ-Bi2MoO6 nanoplates. Mater. Chem. Phys. 110(2–3), 332–336 (2008)

    Article  Google Scholar 

  34. Verma, S., Joy, P.A., Khollam, Y.B., Potdar, H.S., Deshpande, S.B.: Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method. Mater. Lett. 58(6), 1092–1095 (2004)

    Article  Google Scholar 

  35. Kim, C.K., Lee, J.H., Katoh, S., Murakami, R., Yoshimura, M.: Synthesis of Co-, Co-Zn and Ni-Zn ferrite powders by the microwave-hydrothermal method. Mater. Res. Bull. 36(12), 2241–2250 (2001)

    Article  Google Scholar 

  36. Khollam, Y.: Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Mater. Lett. 56(October), 571–577 (2002)

    Article  Google Scholar 

  37. Bensebaa, F., Zavaliche, F., L’Ecuyer, P., Cochrane, R.W., Veres, T.: Microwave synthesis and characterization of Co-ferrite nanoparticles. J. Colloid Interface Sci. 277(1), 104–110 (2004)

    Article  Google Scholar 

  38. Kumada, N.K.N., Komarneni, S.: Microwave hydrothermal synthesis of ABi2O6 (A = Mg, Zn). Mater. Lett. 33(9), 1411–1414 (1998)

    Google Scholar 

  39. Khollam, Y.B., Deshpande, S.B., Khanna, P.K., Joy, P.A., Potdar, H.S.: Microwave-accelerated hydrothermal synthesis of blue white phosphor: Sr2CeO4. Mater. Lett. 58(20), 2521–2524 (2004)

    Article  Google Scholar 

  40. Abothu, I.R., Liu, S.F., Komarneni, S., Li, Q.H.: Processing of Pb(Zr0.52Ti0.48)O3 (PZT) ceramics from microwave and conventional hydrothermal powders. Mater. Res. Bull. 34(9), 1411–1419 (1999)

    Article  Google Scholar 

  41. Vadivel Murugan, A., Sonawane, R.S., Kale, B.B., Apte, S.K., Kulkarni, A.V.: Microwave-solvothermal synthesis of nanocrystalline cadmium sulfide. Mater. Chem. Phys. 71(1), 98–102 (2001)

    Article  Google Scholar 

  42. Khollam, Y.B., Deshpande, A.S., Patil, A.J., Potdar, H.S., Deshpande, S.B., Date, S.K.: Synthesis of yttria stabilized cubic zirconia (YSZ) powders by microwave-hydrothermal route. Mater. Chem. Phys. 71(3), 235–241 (2001)

    Article  Google Scholar 

  43. Selvan, R.K., Augustin, C.O., Berchmans, L.J., Saraswathi, R.: Combustion synthesis of CuFe2O4. Mater. Res. Bull. 38(1), 41–54 (2003)

    Article  Google Scholar 

  44. Sertkol, M., Köseoǧlu, Y., Baykal, A., Kavas, H., Toprak, M.S.: Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. J. Magn. Magn. Mater. 322(7), 866–871 (2010)

    Article  Google Scholar 

  45. Yu, L., Cao, S., Liu, Y., Wang, J., Jing, C., Zhang, J.: Thermal and structural analysis on the nanocrystalline NiCuZn ferrite synthesis in different atmospheres. J. Magn. Magn. Mater. 301(1), 100–106 (2006)

    Article  Google Scholar 

  46. Wu, K.H., Ting, T.H., Li, M.C., Ho, W.D.: Sol-gel auto-combustion synthesis of SiO2-doped NiZn ferrite by using various fuels. J. Magn. Magn. Mater. 298(1), 25–32 (2006)

    Article  Google Scholar 

  47. Costa, A.C.F.M., Morelli, M.R., Kiminami, R.H.G.A.: Microstructure and magnetic properties of Ni1−xZnxFe2O4 synthesized by combustion reaction. J. Mater. Sci. 42(3), 779–783 (2007)

    Article  Google Scholar 

  48. George, M., Mary John, A., Nair, S.S., Joy, P.A., Anantharaman, M.R.: Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302(1), 190–195 (2006)

    Article  Google Scholar 

  49. Mukasyan, A.S., Epstein, P., Dinka, P.: Solution combustion synthesis of nanomaterials solution combustion synthesis of nanomaterials. Proc. Combust. Inst. 31(Jan 2007), 1789–1795 (2016)

    Google Scholar 

  50. Cao, G.: Nanostructures & Nanomaterials, 2nd edn. Imperial College Press, University of Washington, USA (2004)

    Book  Google Scholar 

  51. Masip, E.M.: Síntesis electroquímica de nanopartículas de ferrita de cobalto, caracterizacíon y aplicaciones biomédicas. Dissertação, p. 220 (2015)

    Google Scholar 

  52. Goldman, A.: Modem Ferrite Technology, 2nd edn. Springer, Pittsburgh, PA, USA (2006)

    Google Scholar 

  53. Snelling, E.C.: Soft Ferrites: Properties and Applications, 1a edn. Iliffe (1969)

    Google Scholar 

  54. Buschow, K.H.J. (ed.) Handbook of Magnetic Materials, p. 542. Van der Waals-Zeeman Institute University of Amsterdam; Elsevier, Netherlands (2006)

    Google Scholar 

  55. Sivakumar, N., Narayanasamy, A., Shinoda, K., Chinnasamy, C.N., Jeyadevan, B., Greneche, J.M.: Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite. J. Appl. Phys. 102(1), 013916 (2007)

    Article  Google Scholar 

  56. Shiau, F.-S., Fang, T.-T., Leu, T.-H.: Effect of particle-size distribution on the microstructural evolution in the intermediate stage of sintering. J. Am. Ceram. Soc. 80(2), 286–290 (2005)

    Article  Google Scholar 

  57. Naidu, K.C.B., Madhuri, W.: Hydrothermal synthesis of NiFe2O4 nano-particles: structural, morphological, optical, electrical and magnetic properties. Bull. Mater. Sci. 40(2), 417–425 (2017)

    Article  Google Scholar 

  58. Huo, J., Wei, M.: Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method. Mater. Lett. 63(13–14), 1183–1184 (2009)

    Article  Google Scholar 

  59. Moradmard, H., Farjami Shayesteh, S., Tohidi, P., Abbas, Z., Khaleghi, M.: Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloys Compd. 650, 116–122 (2015)

    Article  Google Scholar 

  60. Wang, J., Ren, F., Yi, R., Yan, A., Qiu, G., Liu, X.: Solvothermal synthesis and magnetic properties of size-controlled nickel ferrite nanoparticles. J. Alloys Compd. 479(1–2), 791–796 (2009)

    Article  Google Scholar 

  61. Hamdeh, H.H., Mahmoud, M.H., Elshahawy, A.M., Makhlouf, Salah A.: Synthesis of highly ordered 30 nm NiFe2O4 particles by the microwave-combustion method. J. Magn. Magn. Mater. 369, 55–61 (2014)

    Article  Google Scholar 

  62. Issa, B., Obaidat, I.M., Albiss, B.A., Haik, Y.: Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14(11), 21266–21305 (2013)

    Article  Google Scholar 

  63. Bean, C.P., Livingston, J.D.: Superparamagnetism. J. Appl. Phys. 30(4), S120–S129 (1959)

    Article  Google Scholar 

  64. Kotnala, R.K., Shah, J.: Ferrite Materials: Nano to Spintronics Regime, vol. 23. Elsevier (2015)

    Google Scholar 

  65. Zhang, M., et al.: Size effects on magnetic properties of Ni0.5Zn0.5Fe2O4 prepared by sol-gel method. Adv. Mater. Sci. Eng. 044317(2010), 3–11 (2016)

    Google Scholar 

  66. Liu, C., Zhang, Z.J.: Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles. Chem. Mater. 13(6), 2092–2096 (2001)

    Article  Google Scholar 

  67. Sechovský, V.: Magnetism in solids: general introduction. Encycl. Mater. Sci. Technol., 5018–5032 (2001)

    Google Scholar 

  68. Cullity, B.D.: Fine particles and thin films. In: Introduction to Magnetic Materials, p. 385. Addison-Wesley, Ed. London (1972)

    Google Scholar 

  69. Rikken, R.S.M., Nolte, R.J.M., Maan, J.C., Van Hest, J.C.M., Wilson, D.A., Christianen, P.C.M.: Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter 10(9), 1295–1308 (2014)

    Article  Google Scholar 

  70. Li, L., et al.: Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3(8), 595–615 (2013)

    Article  Google Scholar 

  71. Hutamaningtyas, E., Utari, Suharyana, Purnama, B., Wijayanta, A.T.: Effects of the synthesis temperature on the crystalline structure and the magnetic properties of cobalt ferrite nanoparticles prepared via coprecipitation. J. Korean Phys. Soc. 69(4), 584–588 (2016)

    Article  Google Scholar 

  72. Šepelák, V., Schultze, D., Krumeich, F., Steinike, U., Becker, K.D.: Mechanically induced cation redistribution in magnesium ferrite and its thermal stability. Solid State Ionics 141–142, 677–682 (2001)

    Article  Google Scholar 

  73. Maensiri, S., Masingboon, C., Boonchom, B., Seraphin, S.: A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr. Mater. 56(9), 797–800 (2007)

    Article  Google Scholar 

  74. Lu, L.T., et al.: Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale 7(46), 19596–19610 (2015)

    Article  Google Scholar 

  75. El Maalam, K., et al.: The effects of synthesis conditions on the magnetic properties of zinc ferrite spinel nanoparticles. J. Phys. Conf. Ser. 758(1), 012008 (2016)

    Article  Google Scholar 

  76. Berkowitz, A.E., Schuele, W.J.: Magnetic properties of some ferrite micropowders. J. Appl. Phys. 30(4), S134–S135 (1959)

    Article  Google Scholar 

  77. Maaz, K., Mumtaz, A., Hasanain, S.K., Ceylan, A.: Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308(2), 289–295 (2007)

    Article  Google Scholar 

  78. Lima, A.C., et al.: The effect of Sr2+ on the structure and magnetic properties of nanocrystalline cobalt ferrite. Mater. Lett. 145, 56–58 (2015)

    Article  Google Scholar 

  79. Skomski, R.: Simple Models of Magnetism. New York (2008)

    Google Scholar 

  80. Qiu, J., Wang, C., Gu, M.: Photocatalytic properties and optical absorption of zinc ferrite nanometer films. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 112(1), 1–4 (2004)

    Article  Google Scholar 

  81. Sapna, Budhiraja, N., Kumar, V., Singh, S.K.: Shape-controlled synthesis of superparamagnetic ZnFe2O4 hierarchical structures and their comparative structural, optical and magnetic properties. Ceram. Int. 45(1), 1067–1076 (2019)

    Article  Google Scholar 

  82. Cao, Y., Qin, H., Niu, X., Jia, D.: Simple solid-state chemical synthesis and gas-sensing properties of spinel ferrite materials with different morphologies. Ceram. Int. 42(9), 10697–10703 (2016)

    Article  Google Scholar 

  83. Singh, A., Singh, A., Singh, S., Tandon, P., Yadav, B.C., Yadav, R.R.: Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications. J. Alloys Compd. 618, 475–483 (2015)

    Article  Google Scholar 

  84. Spaldin, N.: Magnetic Material: Fundamentals and Device Applications (2003)

    Google Scholar 

  85. Aakash, A., Chowdhury, R., Das, D., Mukherjee, S.: Effect of doping of manganese ions on the structural and magnetic properties of nickel ferrite. Ceram. Int. 42(6), 7742–7747 (2016)

    Article  Google Scholar 

  86. Zhang, C.F., Zhong, X.C., Yu, H.Y., Liu, Z.W., Zeng, D.C.: Effects of cobalt doping on the microstructure and magnetic properties of Mn-Zn ferrites prepared by the co-precipitation method. Phys. B Condens. Matter 404(16), 2327–2331 (2009)

    Article  Google Scholar 

  87. Feng, J., Guo, L.Q., Xu, X., Qi, S.Y., Zhang, M.L.: Hydrothermal synthesis and characterization of Mn1−xZnxFe2O4 nanoparticles. Phys. B Condens. Matter 394(1), 100–103 (2007)

    Article  Google Scholar 

  88. Justin Joseyphus, R., Narayanasamy, A., Shinoda, K., Jeyadevan, B., Tohji, K.: Synthesis and magnetic properties of the size-controlled Mn-Zn ferrite nanoparticles by oxidation method. J. Phys. Chem. Solids 67(7), 1510–1517 (2006)

    Article  Google Scholar 

  89. Singh, A.K., Singh, A.K., Goel, T.C., Mendiratta, R.G.: High performance Ni-substituted Mn-Zn ferrites processed by soft chemical technique. J. Magn. Magn. Mater. 281(2–3), 276–280 (2004)

    Article  Google Scholar 

  90. Singh, A.K., Goel, T.C., Mendiratta, R.G., Thakur, O.P., Prakash, C.: Magnetic properties of Mn-substituted Ni-Zn ferrites. J. Appl. Phys. 92(7), 3872–3876 (2002)

    Article  Google Scholar 

  91. Naik, M.M., Naik, H.S.B., Nagaraju, G., Vinuth, M., Vinu, K., Rashmi, S.K.: Effect of aluminium doping on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method. J. Mater. Sci.: Mater. Electron. 29(23), 20395–20414 (2018)

    Google Scholar 

  92. Lassoued, A., Lassoued, M.S., Dkhil, B., Ammar, S., Gadri, A.: Photocatalytic degradation of methyl orange dye by NiFe2O4 nanoparticles under visible irradiation: effect of varying the synthesis temperature. J. Mater. Sci.: Mater. Electron. 29(9), 7057–7067 (2018)

    Google Scholar 

  93. Jesudoss, S.K., et al.: Studies on the efficient dual performance of Mn1−xNixFe2O4 spinel nanoparticles in photodegradation and antibacterial activity. J. Photochem. Photobiol. B Biol. 165, 121–132 (2016)

    Article  Google Scholar 

  94. Rashmi, S.K., Naik, H.S.B., Jayadevappa, H., Sudhamani, C.N., Patil, S.B., Naik, M.M.: Influence of Sm3+ ions on structural, optical and solar light driven photocatalytic activity of spinel MnFe2O4 nanoparticles. J. Solid State Chem. 255(June), 178–192 (2017)

    Article  Google Scholar 

  95. Murashkina, A.A., Murzin, P.D., Rudakova, A.V., Ryabchuk, V.K., Emeline, A.V., Bahnemann, D.W.: Influence of the dopant concentration on the photocatalytic activity: Al-doped TiO2. J. Phys. Chem. C 119(44), 24695–24703 (2015)

    Article  Google Scholar 

  96. Melo, R.S., Banerjee, P., Franco, A.: Hydrothermal synthesis of nickel doped cobalt ferrite nanoparticles: optical and magnetic properties. J. Mater. Sci.: Mater. Electron. 29(17), 14657–14667 (2018)

    Google Scholar 

  97. Brus, L.E.: Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80(9), 4403–4409 (1984)

    Article  Google Scholar 

  98. Ravindra, A.V., Padhan, P., Prellier, W.: Electronic structure and optical band gap of CoFe2O4 thin films. Appl. Phys. Lett. 101(16), 1–5 (2012)

    Article  Google Scholar 

  99. Holinsworth, B.S., et al.: Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4. Appl. Phys. Lett. 103(8), 2–6 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe de Almeida La Porta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, R.C., Pottker, W.E., Batista, A.S.A., Araujo, J.F.D.F., La Porta, F.d.A. (2020). Revised Fundamental Properties and Crystal Engineering of Spinel Ferrite Nanoparticles. In: La Porta, F., Taft, C. (eds) Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-31403-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31403-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31402-6

  • Online ISBN: 978-3-030-31403-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics