Skip to main content

Photocatalytic and Photoluminescent Properties of TiO2 Nanocrystals Obtained by the Microwave Solvothermal Method

  • Chapter
  • First Online:
Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies

Abstract

In the present work, the influence of the short-range disorder on the photocatalytic activity of TiO2 nanocrystals obtained by a rapid microwave solvothermal method was evaluated. The synthesis of TiO2 was performed without synthesis additives and with two different capping agents, sodium dodecyl sulfate (SDS) or carboxymethyl cellulose (CMC). Higher short-range disorder was obtained when SDS was used, as indicated by photoluminescence (PL) and also in the Raman spectra. In the second step, TiO2 samples were used as photocatalysts for the degradation of remazol golden-yellow dye (RNL). High efficiency was observed, with meaningful variations in the percentage efficiency depending on the short-range order of the photocatalyst. Our best results were comparable to those of commercial TiO2 Degussa P25. Adsorption isotherms were also evaluated as a function of time, indicating that chemisorption appears to take place, with a high adsorption capacity of the RNL by the photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xing, Z., Zhang, J., Cui, J., et al.: Recent advances in floating TiO2-based photocatalysts for environmental application. Appl. Catal. B 225, 452–467 (2018)

    Article  Google Scholar 

  2. Liu, M., Li, H., Wang, W.: Defective TiO2 with oxygen vacancy and nanocluster modification for efficient visible light environment remediation. Catal. Today 264, 236–242 (2016)

    Article  Google Scholar 

  3. Zou, M., Xiong, F., Ganeshraja, A.S., et al.: Visible light photocatalysts (Fe, N):TiO2 from ammonothermally processed, solvothermal self-assembly derived Fe–TiO2 mesoporous microspheres. Mater. Chem. Phys. 195, 259–267 (2017)

    Article  Google Scholar 

  4. Soni, H., Nirmal, J.I., Patel, K., Kumar, R.N.: Photocatalytic decoloration of three comercial dyes in aqueous phase and industrial effluents using TiO2 nanoparticles. Desalin Water Treat 57, 6355–6364 (2016)

    Article  Google Scholar 

  5. Soutsas, K., Karayannis, V., Poulios, I., et al.: Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes. Desalination 250, 345–350 (2010)

    Article  Google Scholar 

  6. Wu, W., Xue, X., Jiang, X., et al.: Lattice distortion mechanism study of TiO2 nanoparticles during photocatalysis degradation and reactivation. AIP Adv. 5, 057105 (2015)

    Article  Google Scholar 

  7. Dufour, F., Pigeot-Remy, S., Durupthy, O., et al.: Morphological control of TiO2 anatase nanoparticles: what is the good surface property to obtain efficient photocatalysts? Appl. Catal. B 174–175, 350–360 (2015)

    Article  Google Scholar 

  8. Kumar, S.M., Deshpande, P.A., Krishna, M., et al.: Photocatalytic activity of microwave plasma-synthesized TiO2 nanopowder. Plasma Chem. Plasma Process. 30, 461–470 (2010)

    Article  Google Scholar 

  9. Zhang, J., Wu, B., Huang, L., et al.: Anatase nano-TiO2 with exposed curved surface for high photocatalytic activity. J Alloys. Compd. 661, 441–447 (2016)

    Article  Google Scholar 

  10. Naldoni, A., Allieta, M., Santangelo, S., et al.: Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 134, 7600–7603 (2012)

    Article  Google Scholar 

  11. Ding, Y., Zhang, X., Chen, L., et al.: Oxygen vacancies enabled enhancement of catalytic property of Al reduced anatase TiO2 in the decomposition of high concentration ozone. J. Solid State Chem. 250, 121–127 (2017)

    Article  Google Scholar 

  12. Silva Junior, E., La Porta, F.A., Siu-Liu, M., et al.: A relationship between structural and electronic order–disorder effects and optical properties in crystalline TiO2 nanomaterials. Dalton Trans. 44, 3159–3175 (2015)

    Article  Google Scholar 

  13. Valentin, C.D., Selloni, A.: Bulk and surface polarons in photoexcited anatase TiO2. J. Phys. Chem. Lett. 2, 2223–2228 (2011)

    Article  Google Scholar 

  14. Verma, R., Samdarshi, S.K.: Correlating oxygen vacancies and phase ratio/interface with efficient photocatalytic activity in mixed phase TiO2. J. Alloys Compd. 629, 105–112 (2015)

    Article  Google Scholar 

  15. Liqiang, J., Yichun, Q., Baiqi, W., et al.: Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90, 1773–1787 (2006)

    Article  Google Scholar 

  16. Dong, B., Liu, T., Li, C., Zhang, F.: Species, engineering and characterizations of defects in TiO2-based photocatalyst, Chinese Chem. Lett. 29, 671–680 (2018)

    Google Scholar 

  17. Suprabha, T., Roy, H.G., Thomas, J., et al.: microwave-assisted synthesis of titania nanocubes, nanospheres and nanorods for photocatalytic dye degradation. Nanoscale Res. Lett. 4, 144–152 (2009)

    Article  Google Scholar 

  18. Hu, W., Dong, F., Zhang, J., et al.: A high-efficiency photocatalyst, flaky anatase@natural rutile composite using one-step microwave hydrothermal synthesis. Res. Chem. Intermed. 44, 705–720 (2018)

    Article  Google Scholar 

  19. Su, C.-H., Hu, C.-C., Sun, Y.-C.C., Hsiao, Y.-C.: Highly active and thermo-stable anatase TiO2 photocatalysts synthesized by a microwave-assisted hydrothermal method. J. Taiwan Institute Chem. Eng. 59, 229–236 (2016)

    Article  Google Scholar 

  20. Cheng, T., Zhang, G., Xia, Y., et al.: Template-free synthesis of titania architectures with controlled morphology evolution. J. Mater. Sci. 51, 3941–3956 (2016)

    Article  Google Scholar 

  21. Borkar, S.A., Dharwadkar, S.R.: Effect of microwave processing on polymorphic transformation of TiO2. Ceram. Int. 30, 509–514 (2004)

    Article  Google Scholar 

  22. Jia, X., He, W., Zhang, X., et al.: Microwave-assisted synthesis of anatase TiO2 nanorods with mesopores. Nanotechnology 18, 75602–75607 (2007)

    Article  Google Scholar 

  23. Wang, H.W., Kuo, C.H., Lin, H.C., et al.: Rapid formation of active mesoporous TiO2 photocatalysts via micelle in a microwave hydrothermal process. J. Am. Ceram. Soc. 89, 3388–3392 (2006)

    Article  Google Scholar 

  24. Hart, J.N., Menzies, D., Cheng, Y.B., et al.: A comparison of microwave and conventional heat treatments of nanocrystalline TiO2. Sol. Energy Mater. Sol. Cells 91, 6–16 (2007)

    Article  Google Scholar 

  25. Oh, S.W., Park, S., Sun, Y.: Hydrothermal synthesis of nano-sized anatase TiO2 powders for lithium secondary anode materials. J. Power Sources 161, 1314–1318 (2006)

    Article  Google Scholar 

  26. Chen, Z., Li, W., Zeng, W., et al.: Microwave hydrothermal synthesis of nanocrystalline rutile. Mater. Lett. 62, 4343–4344 (2008)

    Article  Google Scholar 

  27. Murugan, A.V., Samuel, V., Ravi, V.: Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method. Mater. Lett. 60, 479–480 (2006)

    Article  Google Scholar 

  28. Nešić, J., Manojlović, D.D., Anđelković, I., et al.: Preparation, characterization and photocatalytic activity of lanthanum and vanadium co-doped mesoporous TiO2 for azo-dye degradation. J. Mol. Catal. A-Chem. 378, 67–75 (2013)

    Article  Google Scholar 

  29. Fumin, W., Shi, Z., Gong, F., et al.: Morphology control of anatase TiO2 by surfactant-assisted hydrothermal method. Chinese J. Chem. Eng. 15, 754–759 (2007)

    Article  Google Scholar 

  30. Luo, S., Wang, F., Shi, Z., Xin, F.: Preparation of highly active photocatalyst anatase TiO2 by mixed template method. J. Sol-Gel Sci Technol 52, 1–7 (2009)

    Article  Google Scholar 

  31. Lv, K.L., Yu, J.G., Cui, L.Z.: Preparation of thermally stable anatase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity. J. Alloy. Compd. 509, 4557–4562 (2011)

    Article  Google Scholar 

  32. Chowdhury, I.H., Ghosh, S., Naskar, M.K.: Aqueous-based synthesis of mesoporous TiO2 and Ag–TiO2 nanopowders for efficient photodegradation of methylene blue. Ceram. Int. 42, 2488–2496 (2016)

    Article  Google Scholar 

  33. Kumaresan, L., Prabhu, A., Palanichamy, M., Murugesan, V.: Synthesis of mesoporous TiO2 in aqueous alcoholic medium and evaluation of its photocatalytic activity. Mater. Chem. Phys. 126, 445–452 (2011)

    Article  Google Scholar 

  34. Li, C.-Y., Jia, Y.-R., Zhang, X.-C., et al.: Photocatalytic degradation of formaldehyde using mesoporous TiO2 prepared by evaporation-induced self-assembly. J. Cent. South Univ. 21, 4066–4070 (2014)

    Article  Google Scholar 

  35. D’Elia, D., Beauger, C., Hochepied, J.F., et al.: Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting: nanoparticles, nanotubes and aerogels. Int. J. Hydrogen Energy 36, 14360–14373 (2011)

    Article  Google Scholar 

  36. Moura, K.F., Maul, J., Albuquerque, A.R., et al.: TiO2 synthesized by microwave assisted solvothermal method: experimental and theoretical evaluation. J. Solid State Chem. 210, 171–177 (2014)

    Article  Google Scholar 

  37. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  Google Scholar 

  38. Freundlich, H.M.F.: Uber die adsorption in losungen. Z Phys. Chem. A 57, 385–470 (1906)

    Google Scholar 

  39. Webber, T.W., Chakkravorti, R.K.: Pore and solid diffusion models for fixed-bed adsorbers. AlChE J. 20, 228–238 (1974)

    Article  Google Scholar 

  40. Sjoblom, J., Blokhus, L.A.M., Sun, W.M., Friberg, S.E.: Surfactants and cosurfactants in lamellar liquid crystals and adsorbed on solid surfaces—I, the model system sodium dodecyl sulfate/butanol or sodium dodecyl sulfate/benzyl alcohol and α-alumina. J. Colloid Interf. Sci. 140, 481–491 (1990)

    Article  Google Scholar 

  41. Meguro, K., Shoji, N.: Application of keto-enol tautomerism to the study of micellar property of surfactants. In: Mittal, K.L. (ed.) Solution chemistry of surfactants, vol. 1. Plenum Press, New York (1979)

    Google Scholar 

  42. El-Roz, M., Bazin, P., Thibault-Starzyk, F.: An operando-IR study of photocatalytic reaction of methanol on new *BEA supported TiO2 catalyst. Catal. Today 205, 111–119 (2013)

    Article  Google Scholar 

  43. Vieira, F.T.G., Melo, D.S., Lima, S.J.G., et al.: The influence of temperature on the color of TiO2: Cr pigments. Mater. Res. Bull. 44, 1086–1092 (2009)

    Article  Google Scholar 

  44. Golubovic, A., Šćepanović, M., Kremenovic, A., et al.: Raman study of the variation in anatase structure of TiO2 nanopowders due to the changes of sol–gel synthesis conditions. J. Sol-Gel. Sci. Technol. 49, 311–319 (2009)

    Article  Google Scholar 

  45. Šcepanovic, M.J., Grujić-Brojčin, M., Dohčević-Mitrović, Z., Popović, Z.: Characterization of anatase TiO2 nanopowder by variable-temperature Raman spectroscopy. Sci. Sint. 41, 67–73 (2009)

    Article  Google Scholar 

  46. Albuquerque, A.R., Garzim, M.L., Santos, I.M., et al.: DFT study with inclusion of the grimme potential on anatase TiO2: structure, electronic, and vibrational analyses. J. Phys. Chem. A 116, 11731–11735 (2012)

    Article  Google Scholar 

  47. Sekiya, T., Kamei, S., Kurita, S.: Luminescence of anatase TiO2 single crystals annealed in oxygen atmosphere. J. Lumin. 89, 1140–1142 (2000)

    Article  Google Scholar 

  48. Iijima, K., Goto, M., Enomoto, S., et al.: Influence of oxygen vacancies on optical properties of anatase TiO2 thin films. J. Lumin. 128, 911–913 (2008)

    Article  Google Scholar 

  49. Toyoda, T., Yindeesuk, W., Okuno, T., et al.: Electronic structures of two types of TiO2 electrodes: inverse opal and nanoparticulate cases. RSC Adv 5, 49623 (2015)

    Article  Google Scholar 

  50. Nishanthi, S.T., Sundarakannan, B., Subramanian, E., et al.: Enhancement in hydrogen generation using bamboo like TiO2 nanotubes fabricated by a modified two-step anodization technique. Renew. Energy 77, 300–307 (2015)

    Article  Google Scholar 

  51. Choudhury, B., Choudhury, A.: Oxygen defect dependent variation of band gap, urbach energy and luminescence property of anatase, anatase–rutile mixed phase and of rutile phases of TiO2 nanoparticles. Physica E 56, 364–371 (2014)

    Article  Google Scholar 

  52. Longo, V.M., Cavalcante, L.S., Erlo, R., et al.: Strong violet–blue light photoluminescence emission at room temperature in SrZrO3: joint experimental and theoretical study. Acta Mater. 56, 2191–2202 (2008)

    Article  Google Scholar 

  53. Ju, T., Lee, H., Kang, M.: The photovoltaic efficiency of dye sensitized solar cell assembled using carbon capsulated TiO2 electrode. J. Ind. Eng. Chem. 20, 2636–2640 (2014)

    Article  Google Scholar 

  54. Shanmugam, M., Durcan, C., Gedrim, R.J., et al.: Oxygenated-graphene-enabled recombination barrier layer for high performance dye-sensitized solar cell. Carbon 60, 523–530 (2013)

    Article  Google Scholar 

  55. Tang, B., Hu, G.: Two kinds of graphene-based composites for photoanode applying in dye-sensitized solar cell. Power Sources 220, 95–102 (2012)

    Article  Google Scholar 

  56. Kumar, K.S., Song, C.-G., Bak, G.M., et al.: Phase control of yttrium (Y)-doped TiO2 nanofibers and intensive visible photoluminescence. J. Alloy. Compd. 617, 683–687 (2014)

    Article  Google Scholar 

  57. Arier, Ü.Ö.A., Tepehan, F.Z.: Influence of heat treatment on the particle size of nanobrookite TiO2 thin films produced by sol–gel method. Surf. Coat. Technol. 206, 37–42 (2011)

    Article  Google Scholar 

  58. Manassero, A., Satuf, M.L., Alfano, O.M.: Evaluation of UV and visible light activity of TiO2 catalysts for water remediation. Chem. Eng. J. 225, 378–386 (2013)

    Article  Google Scholar 

  59. Moura, K.F., Chantelle, L., Rosendo, D., et al.: Effect of Fe3+ doping in the photocatalytic properties of BaSnO3 Perovskite. Mater. Res. 20, 317–324 (2017)

    Article  Google Scholar 

  60. Chen, C.-Y., Cheng, M.-C., Chen, A.-H.: Photocatalytic decolorization of remazol black 5 and remazol brilliant orange 3R by mesoporous TiO2. J. Environ. Manage. 102, 125–133 (2012)

    Article  Google Scholar 

  61. Katoh, R., Murai, M., Furube, A.: A electron–hole recombination in the bulk of a rutile TiO2 single crystal studied by sub-nanosecond transient absorption spectroscopy. Chem. Phys. Lett. 461, 238–241 (2008)

    Article  Google Scholar 

  62. Jie, H., Park, H., Chae, K., et al.: Suppressed recombination of electrons and holes and its role on the improvement of photoreactivity of flame-synthesized TiO2 nanopowders. Chem. Phys. Lett. 470, 269–274 (2009)

    Article  Google Scholar 

  63. Xin, B., Ren, Z., Wang, P., et al.: Study on the mechanisms of photoinduced carriers separationand recombination for Fe3+–TiO2 photocatalysts. Appl. Surf. Sci. 253, 4390–4395 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Brazilian Funding Agencies FAPESP, CNPq/MCTIC, CT-INFRA/FINEP/MCTIC and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iêda Maria Garcia dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Moura, K.F. et al. (2020). Photocatalytic and Photoluminescent Properties of TiO2 Nanocrystals Obtained by the Microwave Solvothermal Method. In: La Porta, F., Taft, C. (eds) Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-31403-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31403-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31402-6

  • Online ISBN: 978-3-030-31403-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics