Skip to main content

Pharmacophore Mapping of Natural Products for Pancreatic Lipase Inhibition

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The use of pancreatic lipase (LP) inhibitors to reduce the absorption of dietary fats has become one of the pharmacological approaches adopted for the treatment of obesity. Since natural products continue to play a significant role in drug discovery and development the search for natural compounds with PL inhibitory activity is an interesting approach to provide new lead compounds for drug discovery and to guide dietary trends in order to prevent or treat obesity. The consumption of Myrciaria genus plant species is also related to increased HDL cholesterol and improved triglycerides excretion in animal models. In addition, extracts of species from Myrciaria genus are related to in vitro inhibitory activity against PL. Hence it is important to identify which chemical markers from Myrciaria genus species are structurally related to PL inhibitory activity. Ligand-based pharmacophore modeling is one of the most applied approaches in medicinal chemistry in order to detect molecular features related to molecules that are able to modulate a particular biological target. Some Myrciaria genus chemical markers including polyphenols, glycosides and lactonic derivatives share molecular features found in classic PL inhibitors. Such phytomolecules from Myrciaria species are a starting point to develop novel therapeutic options for obesity with PL inhibitory activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Newman, D.J., Cragg, G.M.: Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75(3), 311–335 (2012)

    Article  Google Scholar 

  2. Haustedt, L.O., Mang, C., Siems, K., Schiewe, H.: Rational approaches to natural-product-based drug design. Curr. Opin. Drug Discov. Devel. 9(4), 445–462 (2006)

    Google Scholar 

  3. Baker, D.D., Chu, M., Oza, U., Rajgarhia, V.: The value of natural products to future pharmaceutical discovery. Nat. Prod. Rep. 24(6), 1225–1244 (2007)

    Article  Google Scholar 

  4. Grabowski, K., Baringhaus, K.H., Shneider, G.: Scaffold diversity of natural products: inspiration for combinatorial library design. Nat. Prod. Rep. 25(5), 892–904 (2008)

    Article  Google Scholar 

  5. Haustedt, L.O.; Siems, K.: The role of natural products in drug discovery: examples of marketed drugs. In: Werngard, C., Peter, H. (eds.) Small molecule medicinal chemistry: strategies and technologies, p. 381. Wiley (2015)

    Google Scholar 

  6. Rollinger, J.M., Langer, T., Stuppner, H.: Strategies for efficient lead structure discovery from natural products. Curr. Med. Chem. 13(13), 1491–1507 (2006)

    Article  Google Scholar 

  7. Al-Masri, I.M.: Pancreatic lipase inhibition by papaverine: investigation by simulated molecular docking and subsequent in vitro evaluation. Jordan. J. Pharmacol. 6(3), 271–279 (2013)

    Google Scholar 

  8. Tsai, A.G., Williamson, D.F., Glick, H.A.: Direct medical cost of overweight and obesity in the USA: a quantitative systematic review. Obes. Rev. 12(1), 50–61 (2011)

    Article  Google Scholar 

  9. Calle, E.E., Rodriguez, C., Walker-Thurmond, K., Thun, M.J.: Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348(17), 1625–1638 (2003)

    Article  Google Scholar 

  10. Carrière, F., Renou, C., Ransac, S., Lopez, V., De Caro, J., Ferrato, F., De Caro, A., Fleury, A., Sanwald-Ducray, P., Lengsfeld, H., Beglinger, C., Hadvary, P., Verger, R., Laugier, R.: Inhibition of gastrointestinal lipolysis by orlistat during digestion of test meals in healthy volunteers. Am. J. Physiol. Gastrointest. Liver Physiol. 281(1), G16–G28 (2001)

    Article  Google Scholar 

  11. Myoda, T., Fujimura, S., Park, B., Nagashima, T., Nakagawa, J., Nishizawa, M.: Exotic fruits reference guide. J. Food Agric. Environ. 8, 304–307 (2010)

    Google Scholar 

  12. Dastmalchi, K., Flores, G., Wu, S.B., Ma, C., Dabo, A.J., Whalen, K., Reynertson, K.A., Foronjy, R.F., D’Armiento, J.M., Kennelly, E.J.: Edible Myrciaria vexator fruits: bioactive phenolics for potential COPD therapy. Bioorgan. Med. Chem. 20(14), 4549–4555 (2012)

    Article  Google Scholar 

  13. Lenquiste, S.A., Batista, A.G., Marinele, R.S., Dragano, N.R.V., Maróstica, M.R.: Freeze-dried jaboticaba peel added to high-fat diet increases HDL-cholesterol and improves insulin resistance in obese rats. Food Res. Int. 49, 153–160 (2012)

    Article  Google Scholar 

  14. Batista, G.B., Lenquiste, S.A., Moldenhauer, C., Godoy, J.T., Reis, S.M.P.M., Junior, M.R.M.: Jaboticaba (Myrciaria jaboticaba (Vell.) Berg.) peel improved triglycerides excretion and hepatic lipid peroxidation in high-fat-fed rats. Rev. Nutr. 25, 571–581 (2013)

    Article  Google Scholar 

  15. Alezandro, M.R., Granato, D., Genovese, M.L.: Análises químicas, propriedades funcionais e controle de qualidade de alimentos e bebidas: uma abordagem teórico-prática. Food Res. Int. 54, 650–659 (2013)

    Article  Google Scholar 

  16. Ewas, A.F., Maghrabi, I.A., Namarneh, A.I.: Advances in molecular modeling and docking as a tool for modern drug discovery. Der Pharma Chem. 6, 211–228 (2014)

    Google Scholar 

  17. Sanders, M.P.A., McGuire, R., Roumen, L., Esch, I.J.P., Vlieg, J., Klomp, J.P.G., Graaf, C.: From the protein’s perspective: the benefits and challenges of protein structure-based pharmacophore modeling. Med. Chem. Commun. 3, 28–38 (2012)

    Article  Google Scholar 

  18. Harvey, A.L.: Natural products in drug discovery. Drug Disc. Today 13, 894–901 (2008)

    Article  Google Scholar 

  19. Baker, D.D., Chu, M., Oza, U., Rajgarhia, V.: The value of natural products to future pharmaceutical discovery. Nat. Prod. Rep. 24, 1225–1244 (2007)

    Article  Google Scholar 

  20. Strohl, W.R.: The role of natural products in a modern drug discovery program. Drug Disc. Today 5, 39–41 (2000)

    Article  Google Scholar 

  21. Harvey, A.: Strategies for discovering drugs from previously unexplored natural products. Drug Disc. Today 5, 294–299 (2000)

    Article  Google Scholar 

  22. Newman, D.J., Cragg, G.M.: Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79(3), 629–661 (2016)

    Article  Google Scholar 

  23. WHO: National policy on traditional medicine and regulation of herbal medicines: report of a WHO global survey. World Health Organization, Geneva, Switzerland (2005)

    Google Scholar 

  24. Balunas, M.J., Kinghorn, A.D.: Drug discovery from medicinal plants. Life Sci. 78, 431–441 (2005)

    Article  Google Scholar 

  25. Sharma, S.B., Gupta, R.: Drug development from natural resource: a systematic approach. Mini. Rev. Med. Chem. 15, 52–57 (2015)

    Article  Google Scholar 

  26. Ghorbani, A., Naghibi, F., Mosaddegh, M.: Ethnobotany, ethnopharmacology and drug discovery. Iran. J. Pharm. Sci. 2, 109–118 (2006)

    Google Scholar 

  27. Haustedt, L.O., Mang, C., Siems, K., Schiewe, H.: Rational approaches to natural-product-based drug design. Curr. Opin. Drug Disc. Dev. 9, 445–462 (2006)

    Google Scholar 

  28. Wolfender, J.-L., Marti, G., Thomas, A., Bertrand, S.: Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 1382, 136–164 (2015)

    Article  Google Scholar 

  29. Cheng, F., Li, W., Liu, G., Tang, Y.: In silico ADMET prediction: recent advances, current challenges and future trends. Curr. Topics Med. Chem. 13, 1273–1289 (2013)

    Article  Google Scholar 

  30. Ertl, P., Roggo, S., Schuffenhauer, A.: Natural product-likeness score and its application for prioritization of compound libraries. J. Chem. Inf. Model. 48, 68–74 (2008)

    Article  Google Scholar 

  31. Patwardhan, B., Vaidya, A.D.B., Chorghade, M., Joshi, S.P.: Reverse pharmacology and systems approaches for drug discovery and development. Curr. Bioact. Compd. 4(4), 1–12 (2008)

    Article  Google Scholar 

  32. Mukherjee, P.K., Harwansh, R.K., Bahadur, S., et al.: Metabolomics of medicinal plants—a versatile tool for standardization of herbal products and quality evaluation of ayurvedic formulations. Curr. Sci. 111, 1624–1630 (2016)

    Article  Google Scholar 

  33. Lenz, M., Richter, T., Mühlhauser, I.: The morbidity and mortality associated with overweight and obesity in adulthood: a systematic review. Dtsch. Arztebl. Int. 106, 641–648 (2009)

    Google Scholar 

  34. Peeters, A., Barendregt, J.J., Willekens, F., et al.: Obesity in adulthood and its consequences for life expectancy: a life-table analysis. Ann. Intern. Med. 138, 24–32 (2003)

    Article  Google Scholar 

  35. World Health Organization: Obesity and Overweight (2014). http://www.who.int/mediacentre/factsheets/fs311/en/

  36. World Health Organization: Obesity and Overweight (2016). https://www.who.int/gho/ncd/risk_factors/overweight/en/

  37. GBD 2015 Obesity Collaboration: Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377, 13–27 (2017)

    Article  Google Scholar 

  38. Flegal, K.M., Kit, B.K., Orpana, H., Graubard, B.I.: Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309, 71–82 (2013)

    Article  Google Scholar 

  39. Racette, S.B., Deusinger, S.S., Deusinger, R.H.: Obesity: overview of prevalence, etiology, and treatment. Phys. Ther. 83(3), 276–288 (2003)

    Article  Google Scholar 

  40. Kaila, B., Raman, M.: Obesity: a review of pathogenesis and management strategies. Can. J. Gastroenterol. 22(1), 61–68 (2008)

    Article  Google Scholar 

  41. Jensen, M.D., Ryan, D.H., Apovian, C.M., et al.: 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the obesity society. Circulation 129(Suppl 2), S102–S138 (2014)

    Article  Google Scholar 

  42. Yanovski, S.Z., Yanovski, J.A.: Long-term drug treatment of obesity. A systematic and clinical review. JAMA 311, 74–86 (2014)

    Article  MATH  Google Scholar 

  43. Joo, J.K., Lee, K.S.: Pharmacotherapy for obesity. J. Menopausal Med. 20(3), 90–96 (2014)

    Article  Google Scholar 

  44. Srivastava, G., Apovian, C.M.: Current pharmacotherapy for obesity. Nat. Rev. Endocrinol. 14(1), 12–24 (2018)

    Article  Google Scholar 

  45. Xu, P.F., Dai, S., Wang, J., et al.: Preventive obesity agent montmorillonite adsorbs dietary lipids and enhances lipid excretion from the digestive tract. Sci. Rep. 6, 19659 (2016)

    Article  Google Scholar 

  46. Drew, B.S., Dixon, A.F., Dixon, J.B.: Obesity management: update on orlistat. Vasc. Health Risk Manag. 3, 817–821 (2007)

    Google Scholar 

  47. Wang, H., Eckel, R.: Lipoprotein lipase: from gene to obesity. Am. J. Physiol. Endocrinol. Metab. 297, E271–E288 (2009)

    Article  Google Scholar 

  48. Mead, J.R., Irvine, S.A., Ramji, D.P.: Lipoprotein lipase: structure, function, regulation, and role in disease. J. Mol. Med. (Berl.) 80, 753–769 (2002)

    Article  Google Scholar 

  49. Winkler, F.K., D’Arcy, A., Hunziker, W.: Structure of human pancreatic lipase. Nature 343, 771–774 (1990)

    Article  Google Scholar 

  50. Lowe, M.E.: Structure and function of pancreatic lipase and colipase. Annu. Rev. Nutr. 17, 141–158 (1997)

    Article  Google Scholar 

  51. Bacha, A.B., Karray, A., Daoud, L., Bouchaala, E., Ali, M.B., Gargouri, Y., Ali, Y.B.: Biochemical properties of pancreatic colipase from the common stingray Dasyatis pastinaca. Lipids Health Dis. 10, 69 (2011). https://doi.org/10.1186/1476-511x-10-69

    Article  Google Scholar 

  52. Tsujita, T., Matsuura, Y., Okuda, H.: Studies on the inhibition of pancreatic and carboxylester lipases by protamine. J. Lipid Res. 37(7), 1481–1487 (1996)

    Google Scholar 

  53. Brownlee, I.A., Forster, D.J., Wilcox, M.D., Dettmar, P.W., Seal, C.J., Pearson, J.P.: Physiological parameters governing the action of pancreatic lipase. Nutr. Res. Rev. 23, 146–154 (2010)

    Article  Google Scholar 

  54. Buchholz, T., Melzig, M.F.: Polyphenolic compounds as pancreatic lipase inhibitors. Planta Med. 81, 771–783 (2015)

    Article  Google Scholar 

  55. Li, F., Li, W., Fu, H., Zhang, Q., Koike, K.: Pancreatic lipase-inhibiting triterpenoid saponins from fruits of Acanthopanax senticosus. Chem. Pharm. Bull. (Tokyo) 55, 1087–1089 (2007)

    Article  Google Scholar 

  56. Subandi, Zakiyaturrodliyah, L., Brotosudarmo, T.H.P.: Saponin from purple eggplant (Solanum melongena L.) and their activity as pancreatic lipase inhibitor. IOP Conf. Ser. Mater. Sci. Eng. 509, 012139 (2019)

    Article  Google Scholar 

  57. Peng, Y.A.N.G., Yanqin, L.I.: Inhibitory effect of flavonoids and fagopyritols from buckwheat on pancreatic lipase. Food Sci. 36(11), 60–63 (2015)

    Google Scholar 

  58. Rahim, A.T.M.A., Takahashi, Y., Yamaki, K.: Mode of pancreatic lipase inhibition activity in vitro by some flavonoids and non-flavonoid polyphenols. Food Res. Int. 75, 289–294 (2015)

    Article  Google Scholar 

  59. Birari, R., Roy, S.K., Singh, A., Bhutani, K.: Pancreatic lipase inhibitory alkaloids of Murraya koenigii leaves. Nat. Prod. Commun. 4, 1089–1092 (2009)

    Google Scholar 

  60. Sridhar, S.N.C., Mutya, S., Paul, A.T.: Bis-indole alkaloids from Tabernaemontana divaricata as potent pancreatic lipase inhibitors: molecular modelling studies and experimental validation. Med. Chem. Res. 26, 1268–1278 (2017)

    Article  Google Scholar 

  61. Matsumoto, M., Hosokawa, M., Matsukawa, N., HagioM, Shinoki A., Nishimukai, M., et al.: Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinolon triglyceride absorption in lymph ductcannulatedrats. Eur. J. Nutr. 49, 243–249 (2010)

    Article  Google Scholar 

  62. Ninomiya, K., Matsuda, H., Shimoda, H., Nishida, N., Kasajima, N., Yoshino, T., et al.: Carnosic acid, a newclass of lipid absorption inhibitor from sage. Bioorg. Med. Chem. Lett. 14, 1943–1946 (2004)

    Article  Google Scholar 

  63. Ahn, J.H., Shin, E.J., Liu, Q., Kim, S.B., Choi, K.M., Yoo, H.S., Hwang, B.Y., Lee, M.K.: Lignan derivatives from Fraxinus rhynchophylla and inhibitory activity on pancreatic lipase. Nat. Prod. Sci. 18, 116–120 (2012)

    Google Scholar 

  64. Camlofski, A.M.: Caracterização do fruto de Cerejeira ‘Eugenia Involocrata DC’ visando seu aproveitamento tecnológico. Dissertation, Universidade Estadual de Ponta Grossa, Ponta Grossa (2008)

    Google Scholar 

  65. IPNI: The International Plant Name Index (http://www.ipni.org/). In: The Royal Botanic Gardens. The Harvard University Herbaria; Australian National Herbarium, Kew (2012)

  66. Mattos, J.R.: Jaboticabeiras. Instituto de Pesquisas de Recursos Naturais Renováveis. Porto Alegre, AP (1983)

    Google Scholar 

  67. Donadio, L.C.: Jabuticaba (Myrciaria jaboticaba (Vell.) Berg). Jaboticabal, Funep (2000)

    Google Scholar 

  68. Jham, G.N., Fernandes, S.A., Garcia, C.F., Palmquist, D.: Comparison of GC and HPLC for quantification of organic acids in two jaboticaba (Myrciaria) fruit varieties. Quim. Nova 30(7), 1529–1534 (2007)

    Article  Google Scholar 

  69. Balerdi, C.F., Rafie, R., Crane, J.: Jaboticaba (Myrciaria cauliflora Berg.) a delicious fruit with an excellent market potential. Proc. Fla. Sta. Hortic. Soc. 119(1), 66–68 (2006)

    Google Scholar 

  70. Ascheri, D.P.R., Ascheri, J.L.R., Carvalho, C.W.P.: Caracterização da farinha de bagaço de jabuticaba e propriedades funcionais dos extrusados. Ciênci. Tecnol. Aliment. 26(4), 897–905 (2006)

    Article  Google Scholar 

  71. Oliveira, A.L., Neto, E.A.B., Fenerich, E.J., Alonso, C.O., Azevedo, J.S.A., Neto, P.O.: Efeito da aplicação pré-colheita de cálcio na qualidade dos frutos de jabuticaba. In: XX Congresso Brasileiro de Fruticultura. Vitória (2008)

    Google Scholar 

  72. Leite, A.V., Malta, L.G., Riccio, M.F., Eberlin, M.N., Pastore, G.M., Maróstica Júnior, M.R.: Antioxidant potential of rat plasma by administration of freeze-dried jaboticaba peel (Myrciaria jaboticaba Vell Berg). J. Food Chem. 59, 2277–2283 (2011)

    Article  Google Scholar 

  73. Hagiwara, A., Miyashita, K., Nakanishi, T., Sano, M., Tamano, S., Kadota, T., Koda, T., Nakamura, M., Imaida, K., Ito, N., Shirai, T.: Pronounced inhibition by a natural anthocyanin, purple corn color, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-associated colorectal carcinogenesis in male F344 rats pretreated with 1,2-dimethylhydrazine. Cancer Lett. 171(1), 17–25 (2001)

    Article  Google Scholar 

  74. Kapadia, G.J., Balasubramanian, V., Tokuda, H., Iwashima, A., Nishino, H.: Inhibition of 12-O-tetradecanoylphorbol-13-acetate induced Epstein-Barr virus early antigen activation by natural colorants. Cancer Lett. 115(2), 173–178 (1997)

    Article  Google Scholar 

  75. Wang, C.J., Wang, J.M., Lin, W.L., Chu, C.Y., Chou, F.P., Tseng, T.H.: Protective effect of Hibiscus anthocyanins against tert-butyl hydroperoxide-induced hepatic toxicity in rats. Food Chem. Toxicol. 38(5), 411–416 (2000)

    Article  Google Scholar 

  76. Kong, J.M., Chia, L.S., Goh, N.K., Chia, T.F., Brouillard, R.: Analysis and biological activities of anthocyanins. Phytochemistry 64(5), 923–933 (2003)

    Article  Google Scholar 

  77. Katsube, N., Iwashita, K., Tsushida, T., Yamaki, K., Kobori, T.: Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus) and the anthocyanins. J. Agric. Food Chem. 51(1), 68–75 (2003)

    Article  Google Scholar 

  78. Tsuda, T., Horio, F., Uchida, K., Aoki, H., Osawa, T.: Dietary cyanidin 3-O-b-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr. 133, 2125–2130 (2003)

    Article  Google Scholar 

  79. Wang, J., Mazza, G.: Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW. J. Agric. Food Chem. 50, 4183–4189 (2002)

    Article  Google Scholar 

  80. DeFuria, J., Bennett, G., Strissel, K.J., Perfield II, J.W., Milbury, P.E., Greenberg, A.S., Obin, M.S.: Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J. Nutr. 139(8), 1510–1516 (2009)

    Article  Google Scholar 

  81. Prior, R.L., Wu, X., Gu, L., Hager, T., Hager, A., Wilkes, S., Howard, L.: Purified berry anthocyanins but not whole berries normalize lipid parameters in mice fed an obesogenic high fat diet. Mol. Nutr. Food Res. 53(11), 1406–1418 (2009)

    Article  Google Scholar 

  82. Prior, R.L., Wilkes, S., Rogers, T., Khanal, R.C., Wu, X., Hager, T.J., Hager, A., Howard, L.: Dietary black raspberry anthocyanins do not alter development of obesity in mice fed an obesogenic high-fat diet. J. Agric. Food Chem. 58(7), 3977–3983 (2010)

    Article  Google Scholar 

  83. Souza-Moreira, T.M., Severi, J.A., Santos, E., Silva, V.Y.A., Vilegas, W., Salgado, H.R.N., Pietro, R.C.L.R.: Chemical and antidiarrheal studies of Plinia cauliflora. J. Med. Food 14(12), 1590–1596 (2011)

    Article  Google Scholar 

  84. Boari Lima, A.J., Duarte Corrêa, A., Carvalho Alves, A.P., Patto Abreu, C.M., Dantas-Barros, A.M.: Caracterização química do fruto jabuticaba (Myrciaria cauliflora Berg) e de suas frações. Arch. Latinoam. Nutr. 58(4), 416–421 (2008)

    Google Scholar 

  85. Reynertson, K.A., Wallace, A.M., Adachi, S., Gil, R.R., Yang, H., Basile, M.J., D’Armiento, J., Weinstein, I.B., Kennelly, E.J.: Bioactive depsides and anthocyanins from Jaboticaba (Myrciaria cauliflora) Kurt. J. Nat. Prod. 69, 1228–1230 (2006)

    Article  Google Scholar 

  86. Dastmalchi, K., Flores, G., Wu, S.B., Ma, C., Dabo, A.J., Whalen, K., Reynertson, K.A., Foronjy, R.F., D’Armiento, J.M., Kennelly, E.J.: Edible Myrciaria vexator fruits: bioactive phenolics for potential COPD therapy. Bioorg. Med. Chem. 20(14), 4549–4555 (2012)

    Article  Google Scholar 

  87. Akter, M.S., Oh, S., Eun, J.-B., Ahmed, M.: Nutritional compositions and health promoting phytochemicals of camu-camu (Myrciaria dubia) fruit: a review. Food Res. Int. 44(7), 1728–1732 (2011)

    Article  Google Scholar 

  88. Lenquiste, S.A., Batista, Â.G., Marineli, R.D.S., Dragano, N.R.V., Maróstica, M.R.: Freeze-dried jaboticaba peel added to high-fat diet increases HDL-cholesterol and improves insulin resistance in obese rats. Food Res. Int. 49(1), 153–160 (2012)

    Article  Google Scholar 

  89. Diniz, D.N., Macêdo-Costa, M.R., Pereira, M.S.V., Pereira, J.V., Higino, J.S.: Efeito antifúngico in vitro do extrato da folha e do caule de Myrciaria cauliflora Berg. sobre microrganismos orais. Rev. Odontol. UNESP 39, 151–156 (2010)

    Google Scholar 

  90. Inoue, T., Komoda, H., Uchida, T., Node, K.: Tropical fruit camu-camu (Myrciaria dubia) has anti-oxidative and anti-inflammatory properties. J. Cardiol. 52(2), 127–132 (2008)

    Article  Google Scholar 

  91. Myoda, T., Fujimura, S., Park, B., Nagashima, T., Nakagawa, J., Nishizawa, M.: Antioxidative and antimicrobial potential of residues of camu-camu juice production. J. Food Agric. Environ. 8(2), 304–307 (2010)

    Google Scholar 

  92. Ueda, H., Kuroiwa, E., Tachibana, Y., Kawanishi, K., Ayala, F., Moriyasu, M.: Aldose reductase inhibitors from the leaves of Myrciaria dubia (H. B. & K.) McVaugh. Phytomedicine 11(7–8), 652–656 (2004)

    Article  Google Scholar 

  93. Silva, F.C., Arruda, A., Ledel, A., Dauth, C., Romao, N.F., Viana, R.N., de Barros Falcao Ferraz, A., Picada, J.N., Pereira, P.: Antigenotoxic effect of acute, subacute and chronic treatments with Amazonian camu-camu (Myrciaria dubia) juice on mice blood cells. Food Chem. Toxicol. 50(7), 2275–2281 (2012)

    Article  Google Scholar 

  94. Yu, W., MacKerell Jr., A.D.: Computer-aided drug design methods. Methods Mol. Biol. 1520, 85–106 (2017). https://doi.org/10.1007/978-1-4939-6634-9_5

    Article  Google Scholar 

  95. Kore, P., Mutha, M., Antre, R., Oswal, R., Kshirsagar, S.: Computer-aided drug design: an innovative tool for modeling. Open J. Med. Chem. 2(4), 139–148 (2012)

    Article  Google Scholar 

  96. Yang, S.-Y.: Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov. Today 15, 444–450 (2010)

    Article  Google Scholar 

  97. Langer, T.: Pharmacophores in drug research. Mol. Inf. 29, 470–475 (2010)

    Article  Google Scholar 

  98. Kutlushina, A., Khakimova, A., Madzhidov, T., Polishchuk, P.: Ligand-based pharmacophore modeling using novel 3D pharmacophore signatures. Molecules 23, 3094 (2018)

    Article  Google Scholar 

  99. Che, J., Wang, Z., Sheng, H., et al.: Ligand-based pharmacophore model for the discovery of novel CXCR1 antagonists as anti-cancer metastatic agents. R Soc Open Sci. 5(7), 180176 (2018). Published 4 Jul 2018

    Article  Google Scholar 

  100. Mendez, D., Gaulton, A., Bento, A.P., Chambers, J., De Veij, M., Félix, E., Magariños, M.P., Mosquera, J.F., Mutowo, P., Nowotka, M., et al.: ChEMBL: towards direct deposition of bioassay data. Nucl. Acids Res. 47, D930–D940 (2019)

    Article  Google Scholar 

  101. Kim, S., Thiessen, P.A., Bolton, E.E., et al.: PubChem substance and compound databases. Nucl. Acids Res. 44(D1), D1202–D1213 (2016)

    Article  Google Scholar 

  102. Gilson, M.K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., Chong, J.: BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucl. Acids Res. 44(D1), D1045–D1053 (2016)

    Article  Google Scholar 

  103. Wishart, D.S., Feunang, Y.D., Guo, A.C., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucl. Acids Res. 46(D1), D1074–D1082 (2018)

    Article  Google Scholar 

  104. Leach, A.R., Gillet, V.J., Lewis, R.A., Taylor, R.: Three-dimensional pharmacophore methods in drug discovery. J. Med. Chem. 53, 539–558 (2010)

    Article  Google Scholar 

  105. Dassault Systèmes BIOVIA: Discovery Studio v. 4.0, Dassault Systèmes, San Diego (2012)

    Google Scholar 

  106. Dixon, S.L., Smondyrev, A.M., Knoll, E.H., Rao, S.N., Shaw, D.E., Friesner, R.A.: PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput. Aided Mol. Des. 20, 647–671 (2006)

    Article  Google Scholar 

  107. Wolber, G., Langer, T.: LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 45, 160–169 (2005). https://doi.org/10.1021/ci049885e

    Article  Google Scholar 

  108. Schneidman-Duhovny, D., Dror, O., Inbar, Y., Nussinov, R., Wolfson, H.J.: PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res. 36(Web server issue), W223–W228 (2008)

    Article  Google Scholar 

  109. Hu, B., Lill, M.A.: Exploring the potential of protein-based pharmacophore models in ligand pose prediction and ranking. J. Chem. Inf. Model. 53(5), 1179–1190 (2013)

    Article  Google Scholar 

  110. Rose, P.W., Prlić, A., Altunkaya, A., et al.: The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucl. Acids Res. 45(D1), D271–D281 (2017)

    Google Scholar 

  111. Hecker, E.A., Duraiswami, C., Andrea, T.A., Diller, D.J.: Use of catalyst pharmacophore models for screening of large combinatorial libraries. J. Chem. Inf. Comput. Sci. 42, 1204–1211 (2002)

    Article  Google Scholar 

  112. Wolber, G., Langer, T.: LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 45(1), 160–169 (2005)

    Article  Google Scholar 

  113. Liu, X., Ouyang, S., Yu, B., Liu, Y., Huang, K., Gong, J., Zheng, S., Li, Z., Li, H., Jiang, H.: PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucl. Acids Res. 38, W609–W614 (2010)

    Article  Google Scholar 

  114. Rohilla, A., Khare, G., Tyagi, A.K.: Virtual screening, pharmacophore development and structure based similarity search to identify inhibitors against IdeR, a transcription factor of Mycobacterium tuberculosis. Sci. Rep. 7, 4653 (2017)

    Article  Google Scholar 

  115. Yadav, D., Paliwal, S., Yadav, R., Pal, M., Pandey, A.: Identification of novel HIV 1-protease inhibitors: application of ligand and structure based pharmacophore mapping and virtual screening. PLoS ONE 7(11), e48942 (2012)

    Article  Google Scholar 

  116. Kumar, A., Zhang, K.Y.J.: Hierarchical virtual screening approaches in small molecule drug discovery. Methods. Epub 27 July 2014

    Google Scholar 

  117. Alqahtani, S.: In silico ADME–Tox modeling: progress and prospects. Exp. Opin. Drug Metab. Toxicol. 13(11), 1147–1158 (2017)

    Article  Google Scholar 

  118. Kaur, P., Chamberlin, A.R., Poulos, T.L., Sevrioukova, I.F.: Structure-based inhibitor design for evaluation of a CYP3A4 pharmacophore model. J. Med. Chem. 59(9), 4210–4220 (2016)

    Article  Google Scholar 

  119. Kratz, J.M., Schuster, D., Edtbauer, M., Saxena, P., Mair, C.E., Kirchebner, J., et al.: Experimentally validated hERG pharmacophore models as cardiotoxicity prediction tools. J. Chem. Inf. Model. 54(10), 2887–2901 (2014)

    Article  Google Scholar 

  120. Liu, T., Lin, Y., Wen, X., Jorissen, R.N., Gilson, M.K.: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucl. Acids Res. 35, D198–D201 (2007)

    Article  Google Scholar 

  121. Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A.: Nucl. Acids Red. 78, 1–12 (2015)

    Google Scholar 

  122. ACD/ChemSketch (Freeware) 2017.2.1. Advanced Chemistry Development, Inc

    Google Scholar 

  123. Discovery Studio Client, v2.5.0.9164. Accelrys Software Inc

    Google Scholar 

  124. Schneidman-Duhovny, D., Dror, O., Inbar, Y., Nussinov, R., Wolfson, H.J.: PharmaGist: a webserver for ligand-based pharmacophore detection. Nucl. Acids Res. 36, W223–W228 (2008)

    Article  Google Scholar 

  125. Lunagariya, N.A., Patel, N.K., Jagtap, S.C., Bhutani, K.K.: Inhibitors of pancreatic lipase: state of the art and clinical perspectives. Excli J. 13, 897–921 (2014)

    Google Scholar 

  126. Sharma, N.K., Ahirwar, D.: A review on herbal medicinal plants for the treatment of obesity. J. Harm. Res. 2, 01–33 (2013)

    Google Scholar 

  127. Sukhdev, S., Singh, K.S.: Therapeutic role of phytomedicines on obesity: importance of herbal pancreatic lipase inhibitors. Int. Res. J. Med. Sci. 1(9), 15–26 (2013)

    Google Scholar 

  128. Wu, S.B.A., Dastmalchi, K., Long, C.L., Kennelly, E.J.: Metabolite profiling of jaboticaba (Myrciaria cauliflora) and other dark-colored fruit juices. J. Agric. Food Chem. 60, 7513–7525 (2012)

    Article  Google Scholar 

  129. Hussein, S.A.M., Hashem, A.N.M., Seliem, M.A., Lindequist, U., Nawwar, M.A.M.: Polyoxygenated flavonoids from Eugenia edulis. Phytochemistry 64, 883–889 (2003)

    Article  Google Scholar 

  130. Einbond, L.S., Reynertson, K.A., Luo, X.D., Basile, M.J., Kennelly, E.J.: Anthocyanin antioxidants from edible fruits. Food Chem. 1(84), 23–28 (2004)

    Article  Google Scholar 

  131. Vidigal, M.C.T.R., Minim, V.P.R., Carvalho, N.B., Milagres, M.P., Gonçalves, A.C.A.: Effect of a health claim on consumer acceptance of exotic Brazilian fruit juices: Açaí (Euterpe oleracea Mart.), camu-camu (Myrciaria dubia), Cajá (Spondias lutea L.) and Umbu (Spondias tuberosa Arruda). Food Res. Int. 44(7), 1988–1996 (2011)

    Article  Google Scholar 

  132. Chirinos, R., Galarza, J., Betalleluz-Pallardel, I., Pedreschi, R., Campos, D.: Antioxidant compounds and antioxidant capacity of Peruvian camu camu (Myrciara dubia [H.B.K.] McVaugh) fruit at different maturity stages. Food Chem. 120, 1019–1024 (2010)

    Article  Google Scholar 

  133. Akter, M.S., Oh, S., Eun, J.B., Ahmed, M.: Nutritional compositions and health promoting phytochemicals of camu-camu (Myrciaria dubia) fruit: a review. Food Res. Int. 44, 1728–1732 (2011)

    Article  Google Scholar 

  134. Tietbohl, L.A.C., Lima, B.G., Fernandes, C.P., Santos, M.G., Silva, F.E.B., Denardin, E.L.G., Bachinski, R., Alves, G.G., Silva-Filho, M.V., Rocha, L.: Comparative study and anticholinesterasic evaluation of essential oils from leaves, stems and flowers of Myrciaria floribunda (H. West ex Willd.) O. Berg. Lat. Am. J. Pham. 31(4), 637–641 (2012)

    Google Scholar 

  135. Apel, M.A., Sobral, M., Zuanazzi, J.A., Henriques, A.T.: Essential oil composition of four Plini species (Myrtaceae). Flavour Frag. J. 21, 565–567 (2006)

    Article  Google Scholar 

  136. Sergent, T., Vanderstraeten, J., Winand, J., Beguin, P., Schneider, Y.J.: Phenolic compounds and plant extracts as potential natural anti-obesity substances. Food Chem. 135(1), 68–73 (2012)

    Article  Google Scholar 

  137. Nakai, M., Fukui, Y., Asami, S., Toyoda-Ono, Y., Iwashita, T., Shibata, H., Mitsunaga, T., Hashimoto, F., Kiso, Y.: Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J. Agric. Food Chem. 53(11), 4593–4598 (2005)

    Article  Google Scholar 

  138. Hu, B., Cui, F., Yin, F., Zeng, X., Sun, Y., Li, Y.: Coffeoylquinic acids competitively inhibit pancreatic lipase through binding to the catalytic triad. Int. J. Biol. Macromol. 80, 529–535 (2015)

    Article  Google Scholar 

  139. Bentley, D., Young, A.M., Rowell, L., Gross, G., Tardio, J., Carlile, D.: Evidence of a drug-drug interaction linked to inhibition of ester hydrolysis by orlistat. J. Cardiovasc. Pharmacol. 60(4), 390–396 (2012)

    Article  Google Scholar 

  140. King, A.R., Lodola, A., Carmi, C., Fu, J., Mor, M., Piomelli, D.: A critical cysteine residue in monoacylglycerol lipase is targeted by a new class of isothiazolinone-based enzyme inhibitors. Br. J. Pharmacol. 157(6), 974–983 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius Barreto da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira, M.G., de Souza, W.R.N., Rodrigues, R.P., Kawano, D.F., Borges, L.L., da Silva, V.B. (2020). Pharmacophore Mapping of Natural Products for Pancreatic Lipase Inhibition. In: La Porta, F., Taft, C. (eds) Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-31403-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31403-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31402-6

  • Online ISBN: 978-3-030-31403-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics