Skip to main content

Design of Inhibitors of the Human Fibroblast Activation Protein α as a Strategy to Hinder Metastasis and Angiogenesis

  • Chapter
  • First Online:
Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In many cancers such as breast, colon and pancreatic carcinomas, the tumor-associated stroma constitutes the microenvironment necessary to provide their nutritional support and survival/growth factors. In these tissues, cancer-associated fibroblasts express the fibroblast activation protein α (FAP), a dipeptidyl peptidase involved in the proteolytic remodeling of the stromal extracellular matrix of the tumor. Accordingly, high levels of stromal FAP correlate with a rapid progression of colorectal cancers, for example, increasing the potential for the development of metastasis. The presence of FAP on the surface of the cells is associated with other enzymes (specially metalloproteinases) and their regulators in order to promote an extensive degradation of the extracellular matrix. FAP is the only peptidase able to type-I collagen as a substrate and it acts in association with matrix metalloproteinases to produce biologically active fragments of denatured collagen. Therefore, the resulting proteolytic degradation (remodeling) of the extracellular matrix allows the neoplastic cells to invade the surrounding tissues, to migrate to distant sites (metastasis) and the increase in the microvessel density (angiogenesis) to provide the proper nutrition of the tumor. Herein we reviewed the role of FAP in cancers and the main synthetic and computer-aided strategies for the development of FAP inhibitors. As an example of structure-based drug design, we also used docking simulations coupled to in silico analyses of pharmacokinetics and toxicity profiles to identify new potential FAP inhibitors. In this concern, we started from 60,000 structures and applied a shape-fitting sampling algorithm to select compounds that could potentially fit into the binding pocket of FAP. The top 2% compounds were rescored and had their binding affinity energies calculated. We studied the binding modes for the top-twelve compounds, estimating their drug-likeness and predicted some toxicity endpoints. All ligands displayed significant binding affinity energies, and none was potentially mutagenic or tumorigenic and only one was expected to be teratogenic. Nine of the twelve selected compounds displayed drug-likeness scores that would confer a proper lipophilicity balance for oral use. Although these compounds must be subjected to experimental validation concerning FAP inhibition, they seem promising due to the good predicted binding affinities, adequate pharmacokinetic profiles and general low toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brash, D.E., Ziegler, A., Jonason, A.S., et al.: Sunlight and sunburn in human skin cancer: p53, apoptosis, and tumor promotion. J. Invest. Dermatol. Symp. Proc. 1(2), 136–142 (1996)

    Google Scholar 

  2. Kawasaki, Y., Hirabayashi, Y., Kaneko, T., et al.: Benzene-induced hematopoietic neoplasms including myeloid leukemia in Trp53-deficient C57BL/6 and C3H/He mice. Toxicol. Sci. 110(2), 293–306 (2009)

    Article  Google Scholar 

  3. Schiffman, M., Castle, P.E., Jeronimo, J., et al.: Human papilloma virus and cervical cancer. Lancet 370(9590), 890–907 (2007)

    Article  Google Scholar 

  4. Wang, C., Yuan, Y., Hunt, R.H.: The association between Helicobacter pylori infection and early gastric cancer: a meta-analysis. Am. J. Gastroenterol. 102(8), 1789–1798 (2007)

    Article  Google Scholar 

  5. Smith, C.J., Perfetti, T.A., King, J.A.: Perspectives on pulmonary inflammation and lung cancer risk in cigarette smokers. Inhal. Toxicol. 18(9), 667–677 (2006)

    Article  Google Scholar 

  6. Green, D.R., Evan, G.I.: A matter of life and death. Cancer Cell 1(1), 19–30 (2002)

    Article  Google Scholar 

  7. Kasibhatla, S., Tseng, B.: Why target apoptosis in cancer treatment? Mol. Cancer Ther. 2(6), 573–580 (2003)

    Google Scholar 

  8. Gulliksen, A., Karlsen, F.: Microchips for the diagnosis of cervical cancer. Methods Mol. Biol. 385, 65–86 (2007)

    Article  Google Scholar 

  9. Ogle, O.E., Nikoyan, L.: Radiation and chemotherapy in oral and maxillofacial surgery. In: Motamedi, M.H.K. (ed.) A Textbook of Advanced Oral and Maxillofacial Surgery, pp. 257–278. InTech, Rijeka (2013)

    Google Scholar 

  10. Connolly, J.L., Schnitt, S.J., Wang, H.H., et al.: Principles of Cancer Pathology. In: Bast, R.C., Kufe, D.W., Pollock, R.E., et al. (eds.) Holland-Frei Cancer Medicine, 5th edn, pp. 384–399. BC Decker Inc., Hamilton (2000)

    Google Scholar 

  11. Li, Z.W., Dalton, W.S.: Tumor microenvironment and drug resistance in hematologic malignancies. Blood Rev. 20(6), 333–342 (2006)

    Article  Google Scholar 

  12. Trédan, O., Galmarini, C.M., Patel, K., et al.: Drug resistance and the solid tumor microenvironment. J. Natl. Cancer 99(19), 1441–1454 (2007)

    Article  Google Scholar 

  13. Sun, Y.: Tumor microenvironment and cancer therapy resistance. Cancer Lett. 380(1), 205–215 (2016)

    Article  Google Scholar 

  14. Son, B., Lee, S., Youn, H., et al.: The role of tumor microenvironment in therapeutic resistance. Oncotarget 8(3), 3933–3945 (2017)

    Article  Google Scholar 

  15. Shee, K., Yang, W., Hinds, J.W., et al.: Therapeutically targeting tumor microenvironment-mediated drug resistance in estrogen receptor-positive breast cancer. J. Exp. Med. 215(3), 895–910 (2018)

    Article  Google Scholar 

  16. Nyberg, P., Salo, T., Kalluri, R.: Tumor microenvironment and angiogenesis. Front Biosci. 13, 6537–6553 (2008)

    Article  Google Scholar 

  17. Sarah, J.L., Payne, S.J.L., Jones, L.: Influence of the tumor microenvironment on angiogenesis. Future Oncol. 7(3), 395–408 (2011)

    Article  Google Scholar 

  18. Watnick, R.S.: The role of the tumor microenvironment in regulating angiogenesis. Cold Spring Harb. Perspect. Med. 2(12) (2012). https://doi.org/10.1101/cshperspect.a006676a006676

  19. Samples, J., Willis, M., Klauber-DeMore, N.: Targeting angiogenesis and the tumor microenvironment. Surg. Oncol. Clin. N. Am. 22(4), 629–639 (2013)

    Article  Google Scholar 

  20. Mittal, K., Ebos, J., Rini, B.: Angiogenesis and the tumor microenvironment: vascular endothelial growth factor and beyond. Semin. Oncol. 41(2), 235–251 (2014)

    Article  Google Scholar 

  21. Gascard, P., Tlsty, T.D.: Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev. 30(9), 1002–1019 (2016)

    Article  Google Scholar 

  22. Sewell-Loftin, M.K., Bayer. S.H., Crist, E et al.: Cancer-associated fibroblasts support vascular growth through mechanical force. Sci. Rep. 7(1). (2017). https://doi.org/10.1038/s41598-017-13006-x

  23. Ahrens, D., Bhagat, T.D., Nagrath, D., et al.: The role of stromal cancer-associated fibroblasts in pancreatic cancer. J. Hematol. Oncol. 10(1), 76 (2017). https://doi.org/10.1186/s13045-017-0448-5

    Article  Google Scholar 

  24. Tao, L., Huang, G., Song, H., et al.: Cancer associated fibroblasts: an essential role in the tumor microenvironment. Oncol. Lett. 14(3), 2611–2620 (2017)

    Article  Google Scholar 

  25. Lazennec, G., Richmond, A.: Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol. Med. 16(3), 133–144 (2010)

    Article  Google Scholar 

  26. Banat, G.A., Tretyn, A., Pullamsetti, S.S. et al.: Immune and inflammatory cell composition of human lung cancer stroma. PLoS ONE 10(9) (2015). https://doi.org/10.1371/journal.pone.0139073.eCollection2015

  27. Jakubowska, K., Kisielewski, W., Kańczuga-Koda, L., et al.: Diagnostic value of inflammatory cell infiltrates, tumor stroma percentage and disease-free survival in patients with colorectal cancer. Oncol. Lett. 14(3), 3869–3877 (2017)

    Article  Google Scholar 

  28. Lorusso, G., Curzio Rüegg, C.: The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem. Cell. Biol. 130(6), 1091–1103 (2008)

    Article  Google Scholar 

  29. Kendall, R.T., Feghali-Bostwick, C.A.: Fibroblasts in fibrosis: novel roles and mediators. Front. Pharmacol. 5(123) (2014). https://doi.org/10.3389/fphar.2014.00123

  30. Yamaguchi, H., Yoshida, N., Takanashi, M., et al.: Stromal fibroblasts mediate extracellular matrix remodeling and invasion of scirrhous gastric carcinoma cells. PLoS ONE 9(1), e85485 (2014). https://doi.org/10.1371/journal.pone.0085485.eCollection

    Article  Google Scholar 

  31. Garin-Chesa, P., Old, L.J., Rettig, W.J., et al.: Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl. Acad. Sci. U.S.A. 87, 7235–7239 (1990)

    Article  Google Scholar 

  32. Aoyama, A., Chen, W.T.: A 170-kDa membrane-bound protease is associated with the expression of invasiveness by human malignant melanoma cells. Proc. Natl. Acad. Sci. U.S.A. 87, 8296–8300 (1990)

    Article  Google Scholar 

  33. Monsky, W.L., Lin, C.Y., Aoyama, A., et al.: A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res. 54, 5702–5710 (1994)

    Google Scholar 

  34. Kelly, T., Kechelava, S., Rozypal, T.L., et al.: Seprase, a membrane-bound protease, is over expressed by invasive ductal carcinoma cells of human breast cancers. Mod. Pathol. 11, 855–863 (1998)

    Google Scholar 

  35. Okada, K., Chen, W.T., Iwasa, S., et al.: Seprase, a membrane-type serine protease, has different expression patterns in intestinal—and diffuse-type gastric cancer. Oncology 65, 363–370 (2003)

    Article  Google Scholar 

  36. Mori, Y., Kono, K., Matsumoto, Y., et al.: The expression of a type II transmembrane serine protease (Seprase) in human gastric carcinoma. Oncology 67, 411–419 (2004)

    Article  Google Scholar 

  37. Iwasa, S., Okada, K., Chen, W.T., et al.: Increased expression of seprase, a membrane-type serine protease, is associated with lymph node metastasis in human colorectal cancer. Cancer Lett. 227, 229–236 (2005)

    Article  Google Scholar 

  38. Henry, L.R., Lee, H.O., Lee, J.S., et al.: Clinical implications of fibroblast activation protein in patients with colon cancer. Clin. Cancer Res. 13, 1736–1741 (2007)

    Article  Google Scholar 

  39. Brennen, W.N., Isaacs, J.T., Denmeade, S.R.: Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther. 11(2), 257–266 (2012)

    Article  Google Scholar 

  40. Scanlan, M.J., Raj, B.K., Calvo, B., et al.: Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc. Natl. Acad. Sci. U.S.A. 91, 5657–5661 (1994)

    Article  Google Scholar 

  41. Pineiro-Sanchez, M.L., Goldstein, L.A., Dodt, J., et al.: Identification of the 170-kDa melanoma membrane-bound gelatinase (seprase) as a serine integral membrane protease. J. Biol. Chem. 272, 7595–7601 (1997)

    Article  Google Scholar 

  42. Cheng, J.D., Valianou, M., Canutescu, A.A., et al.: Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth. Mol. Cancer Ther. 4, 351–360 (2005)

    Article  Google Scholar 

  43. Kelly, T.: Evaluation of seprase activity. Clin. Exp. Metastasis 17, 57–62 (1999)

    Article  Google Scholar 

  44. Park, J.E., Lenter, M.C., Zimmermann, R.N., et al.: Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem. 274, 36505–36512 (1999)

    Article  Google Scholar 

  45. Lee, K.N., Jackson, K.W., Christiansen, V.J., et al.: A novel plasma proteinase potentiates alpha2-antiplasmin inhibition of fibrin digestion. Blood 103, 3783–3788 (2004)

    Article  Google Scholar 

  46. Christiansen, V.J., Jackson, K.W., Lee, K.N., et al.: Effect of fibroblast activation protein and alpha2-antiplasmin cleaving enzyme on collagen types I, III, and IV. Arch. Biochem. Biophys. 457, 177–186 (2007)

    Article  Google Scholar 

  47. Huang, Y., Simms, A.E., Mazur, A., et al.: Fibroblast activation protein-alpha promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions. Clin. Exp. Metastasis 28, 567–579 (2011)

    Article  Google Scholar 

  48. Keane, F.M., Nadvi, N.A., Yao, T.W., et al.: Neuropeptide Y, B-type natriuretic peptide, substance P and peptide YY are novel substrates of fibroblast activation protein-alpha. FEBS J. 278, 1316–1332 (2011)

    Article  Google Scholar 

  49. Liu, R., Li, H., Liu, L., et al.: Fibroblast activation protein: a potential therapeutic target in cancer. Cancer Biol. Ther. 13(3), 123–129 (2012)

    Article  Google Scholar 

  50. Chen, W.T.: Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. J. Exp. Zool. 251, 167–185 (1989)

    Article  Google Scholar 

  51. Schurer, S.C., Tyagi, P., Muskal, S.M.: Prospective exploration of synthetically feasible, medicinally relevant chemical space. J. Chem. Inf. Model. 45, 239–248 (2005)

    Article  Google Scholar 

  52. Gasteiger, J.: De novo design and synthetic accessibility. J. Comput. Aid Mol. Des. 21, 307–309 (2007)

    Article  Google Scholar 

  53. Corey, E.J., Chelg, X.M.: The Logic of Chemical Synthesis, 1st edn, p. 436. Wiley, New York (1995)

    Google Scholar 

  54. Karpf, M.: From milligrams to tons: the importance of synthesis and process research in the development of new drugs. In: Shioiri, T., Izawa, K., Konoike, T. (eds.) Pharmaceutical process chemistry, 1st edn., pp. 1–38. Wiley-VCH Verlag GmbH & Co., New York (2011)

    Google Scholar 

  55. Wunderlich, Z., Mirny, L.A.: Using the topology of metabolic networks to predict viability of mutant strains. Biophys. J. 91, 2304–2311 (2006)

    Article  Google Scholar 

  56. Goodwin, W.: Scientific understanding and synthetic design. Brit. J. Philos. Sci 60, 271–301 (2009)

    Article  MathSciNet  Google Scholar 

  57. Patrick, G.L.: An Introduction to Medicinal Chemistry, 5th edn, p. 789. Oxford University Press, Oxford (2013)

    Google Scholar 

  58. Jansen, K., Heirbaut, L., Verkerk, R., et al.: Extended structure-activity relationship and pharmacokinetic investigation of (4-quinolinoyl)glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J. Med. Chem. 57(7), 3053–3074 (2014)

    Article  Google Scholar 

  59. LeBeau, A.M., Brennen, W.N., Aggarwal, S., et al.: Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol. Cancer Ther. 8(5), 1378–1386 (2009)

    Article  Google Scholar 

  60. Connolly, B.A., Sanford, D.G., Chiluwal, A.K., et al.: Dipeptide boronic acid inhibitors of dipeptidyl peptidase IV: determinants of potency and in vivo efficacy and safety. J. Med. Chem. 51, 6005–6013 (2008)

    Article  Google Scholar 

  61. Poplawski, S.E., Lai, J.H., Sanford, D.G., et al.: Pro-soft Val-boroPro: a strategy for enhancing in vivo performance of boronic acid inhibitors of serine proteases. J. Med. Chem. 54(7), 2022–2028 (2011)

    Article  Google Scholar 

  62. Dalkas, G.A., Vlachakis, D., Tsagkrasoulis, D., et al.: State-of-the-art technology in modern computer-aided drug design. Brief. Bioinform. 14(6), 745–752 (2013)

    Article  Google Scholar 

  63. Veselovsky, A.V., Ivanov, A.S.: Strategy of computer-aided drug design. Curr. Drug Targets Infect. Disord. 3(1), 33–40 (2003)

    Article  Google Scholar 

  64. Langer, T., Hoffmann, R.D.: Pharmacophores and Pharmacophore Searches, 1st edn, p. 375. Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim (2006)

    Book  Google Scholar 

  65. Wermuth, C.G.: The Practice of Medicinal Chemistry, 3rd edn, p. 982. Academic Press, California (2008)

    Google Scholar 

  66. Waumans, Y., Baerts, L., Kehoe, K., et al.: The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Front. Immunol. 6, 387 (2015). https://doi.org/10.3389/fimmu.2015.00387.eCollection2015

    Article  Google Scholar 

  67. Al-Masri, I.M., Mohammad, M.K., Taha, M.O.: Discovery of DPP IV inhibitors by pharmacophore modeling and QSAR analysis followed by in silico screening. Chem. Med. Chem. 3(11), 1763–1779 (2008)

    Article  Google Scholar 

  68. Crum Brown, A., Fraser, T.R.: On the connection between chemical constitution and physiological action; with special reference to the physiological action of the salts of the ammonium bases derived from Strychnia, Brucia, Thebaia, Codeia, Morphia, and Nicotia. J. Anat. Physiol. 2(2), 224–242 (1868)

    Google Scholar 

  69. Hulzebos, E.M., Janssen, P.A.H., Maslankiewicz, L., et al.: The Application of Structure-Activity Relationships in Human Hazard Assessment: A First Approach, RIVM Report No. 601516008, p. 55. Netherlands National Institute for Public Health and the Environment, Bilthoven (2001)

    Google Scholar 

  70. Thomas, G.: Fundamentals of Medicinal Chemistry, 1st edn, p. 285. Wiley, New York (2003)

    Google Scholar 

  71. Gramatica, P.: On the Development and Validation of QSAR Models. In: Reisfeld, B., Mayeno, A.N. (eds.) Computational Toxicology, vol. II, pp. 499–526. Springer Science+Business Media LLC, New York (2013)

    Chapter  Google Scholar 

  72. Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors, 1st edn, p. 667. Wiley-VCH Verlag, Weinheim (2000)

    Book  Google Scholar 

  73. Prasanna, S., Doerksen, R.J.: Topological polar surface area: a useful descriptor in 2D-QSAR. Curr. Med. Chem. 16(1), 21–41 (2009)

    Article  Google Scholar 

  74. Karelson, M.: Molecular Descriptors in QSAR/QSPR, 1st edn, p. 448. Wiley, New York (2000)

    Google Scholar 

  75. Stanton, D.T., Jurs, P.C.: Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies. Anal. Chem. 62(21), 2323–2329 (1990)

    Article  Google Scholar 

  76. Xu, J., Huang, S., Zhang, T., et al.: The SAR studies on FAP inhibitors as tumor-targeted agents. Med. Chem. Res. 24, 1744–1752 (2015)

    Article  Google Scholar 

  77. Tsai, T.Y., Yeh, T.K., Chen, X., et al.: Substituted 4-carboxymethylpyroglutamic acid diamides as potent and selective inhibitors of fibroblast activation protein. J. Med. Chem. 53, 6572–6583 (2010)

    Article  Google Scholar 

  78. Tran, T., Quan, C., Edosada, C.Y., et al.: Synthesis and structure-activity relationship of N-acyl-Gly-, N-acyl-Sar- and N-blocked-boroPro inhibitors of FAP, DPP4, and POP. Bioorg. Med. Chem. Lett. 17, 1438–1442 (2007)

    Article  Google Scholar 

  79. Poplawski, S.E., Lai, J.H., Li, Y., et al.: Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase. J. Med. Chem. 56, 3467–3477 (2013)

    Article  Google Scholar 

  80. McConkey, B.J., Sobolev, V., Edelman, M.: The performance of current methods in ligand-protein docking. Curr. Sci. 83, 845–855 (2002)

    Google Scholar 

  81. Kroemer, R.T.: Structure-based drug design: docking and scoring. Curr. Protein Pept. Sci. 8(4), 312–328 (2007)

    Article  Google Scholar 

  82. Arooj, M., Kim, S., Sakkiah, S., et al.: Molecular modeling study for inhibition mechanism of human chymase and its application in inhibitor design. PLoS ONE 8(4), e62740 (2003). https://doi.org/10.1371/journal.pone.0062740

    Article  Google Scholar 

  83. Aertgeerts, K., Levin, I., Shi, L., et al.: Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein alpha. J. Biol. Chem. 280, 19441–19444 (2005)

    Article  Google Scholar 

  84. Irwin, D.M.: Ancient duplications of the human proglucagon gene. Genomics 79, 741–746 (2002)

    Article  Google Scholar 

  85. Joy, S., Nair, P.S., Hariharan, R., et al.: Detailed comparison of the protein-ligand docking efficiencies of GOLD, a commercial package and Argus Lab, a licensable freeware. Silico Biol. 6(6), 601–605 (2006)

    Google Scholar 

  86. Silva, V.B., Kawano, D.F., Gomes, A.S., et al.: Molecular dynamics, density functional, ADMET predictions, virtual screening, and molecular interaction field studies for identification and evaluation of novel potential CDK2 inhibitors in cancer therapy. J. Phys. Chem. A 112(38), 8902–8910 (2008)

    Article  Google Scholar 

  87. Young, D.C.: Computational Drug Design: A Guide for Computational and Medicinal Chemists. Wiley, New Jersey (2009)

    Book  Google Scholar 

  88. Torres, F.C., Goncalves, G.A., Vanzolini, K.L., et al.: Combining the pharmacophore features of coumarins and 1,4-substituted 1,2,3-triazoles to design new acetylcholinesterase inhibitors: fast and easy generation of 4-methylcoumarins/1,2,3-triazoles conjugates via click chemistry. J. Braz. Chem. Soc. 27(9), 1541–1550 (2016)

    Google Scholar 

  89. Stierand, K., Maaß, P., Rarey, M.: Molecular complexes at a glance: automated generation of two-dimensional complex diagrams. Bioinformatics 22(14), 1710–1716 (2006)

    Article  Google Scholar 

  90. Sander, T.: OSIRIS property explorer. Actelion Pharmaceuticals Ltd., Allschwil (2011). https://www.organic-chemistry.org/prog/peo/

  91. Meng, X.Y., Zhang, H.X., Mezei, M., et al.: Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 7(2), 146–157 (2011)

    Article  Google Scholar 

  92. Wang, R., Lai, L., Wang, S.: Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 16(1), 11–26 (2002)

    Article  Google Scholar 

  93. Murphy, K.P.: Predicting binding energetics from structure: looking beyond ΔG°. Med. Res. Rev. 19(4), 333–339 (1999)

    Article  Google Scholar 

  94. Verdonk, M.L., Cole, J.C., Hartshorn, M.J., et al.: Improved protein-ligand docking using GOLD. Proteins 52(4), 609–623 (2003)

    Article  Google Scholar 

  95. Van de Waterbeemd, H., Gifford, E.: ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov 2(3), 192–204 (2003)

    Article  Google Scholar 

  96. Nolan, T., Singh, N., McCurdy, C.R.: Ligand macromolecule interactions: theoretical principles of molecular recognition. In: Roque, A.C.A. (ed.) Ligand-Macromolecular Interactions in Drug Discovery, pp. 13–29. Humana Press, New York (2010)

    Chapter  Google Scholar 

  97. Muley, L., Baum, B., Smolinski, M., et al.: Enhancement of hydrophobic interactions and hydrogen bond strength by cooperativity: synthesis, modeling, and molecular dynamics simulations of a congeneric series of thrombin inhibitors. J. Med. Chem. 53(5), 2126–2135 (2010)

    Article  Google Scholar 

  98. Sharman, G.J.: Conformation and stereochemical analysis of drug molecules. In: Everett, J.R., et al. (eds.) NMR in Pharmaceutical Science, pp. 207–220. Wiley, Chichester (2015)

    Google Scholar 

  99. Silva, V.B., Kawano, D.F., Rodrigues, R.P., et al.: Bioisosteric replacements in drug design. In: Taft, C.A., et al. (eds.) New Developments in Medicinal Chemistry, vol. 2, pp. 213–238. Bentham Science Publishers, San Francisco (2014)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian funding agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and PRP-UNICAMP (Pró-Reitoria de Pesquisa da Unicamp) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Kawano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawano, D.F., de Paula da Silva, C.H.T., Taft, C.A. (2020). Design of Inhibitors of the Human Fibroblast Activation Protein α as a Strategy to Hinder Metastasis and Angiogenesis. In: La Porta, F., Taft, C. (eds) Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-31403-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31403-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31402-6

  • Online ISBN: 978-3-030-31403-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics