Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 583 Accesses

Abstract

Plasmonics is an emerging area concerning in the fields of optics, telecommunications, optoelectronics and photovoltaics. Plasmonic nanostructures in general possess the capability to effectively concentrate and trap the electromagnetic field into the active region of the device covering different spectral regions of the entire solar spectrum. This could be finely tuned by optimizing several parameters such as the type of material, its shape, size and the local dielectric medium surrounding the particles. Excitonics, on the other hand is another independent branch of study primarily involving with the manipulation in generation and recombination of electron-hole pairs in inorganic and organic semiconductors, dyes and polymers. There is a subtle, yet a strong complementarity that exists between Plasmonics and Excitonics which could be exploited to generate several hybrid functional materials and devices to potentially enhance/boost the performance and efficiency of the devices. In this book chapter, I will start by discussing with the background on Plasmonics and Excitonics and how we can combine materials from these individual fields to develop hybrid heterostructures and fabricate all next generation photovoltaic devices. Next, I will give a detailed survey on how these materials could be synthesized using several substrate and solution based wet-chemistry, solvothermal, continuous flow and hot-injection methods. Several surface, optical and electrical characterization techniques will be thoroughly discussed concerning the plasmonic and excitonic nanostructures. The latter half of the chapter will be followed by discussing the underlying design principles and the device physics involving the interfacial exciton generation, recombination and charge carrier extraction processes when these plasmonic and excitonic materials are incorporated/embedded in between other transport layers. Finally, in conclusion, I will briefly discuss certain future prospects and perspectives involving these materials that could potentially open up new opportunities in the fabrication strategies of several high performance hybrid photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leonhardt, U.: Invisibility cup. Nat. Photonics 1, 207–208 (2007). https://doi.org/10.1038/nphoton.2007.38

    Article  Google Scholar 

  2. Freestone, I., Meeks, N., Sax, M., Higgitt, C.: The Lycurgus cup—a Roman nanotechnology. Gold Bull. 40, 270–277 (2007). https://doi.org/10.1007/BF03215599

    Article  Google Scholar 

  3. Sciau, P., Mirguet, C., Roucau, C., et al.: Double nanoparticle layer in a 12th century lustreware decoration: accident or technological mastery? J. Nano Res. 8, 133–139 (2009). https://doi.org/10.4028/www.scientific.net/JNanoR.8.133

    Article  Google Scholar 

  4. Heiligtag, F.J., Niederberger, M.: The fascinating world of nanoparticle research. Mater. Today 16, 262–271 (2013). https://doi.org/10.1016/j.mattod.2013.07.004

    Article  Google Scholar 

  5. Jana, J., Ganguly, M., Pal, T.: Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv. 6, 86174–86211 (2016). https://doi.org/10.1039/C6RA14173K

    Article  Google Scholar 

  6. Willets, K.A., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007). https://doi.org/10.1146/annurev.physchem.58.032806.104607

    Article  Google Scholar 

  7. Petryayeva, E., Krull, U.J.: Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal. Chim. Acta 706, 8–24 (2011). https://doi.org/10.1016/j.aca.2011.08.020

    Article  Google Scholar 

  8. Zhang, J.Z., Noguez, C.: Plasmonic optical properties and applications of metal nanostructures. Plasmonics 3, 127–150 (2008). https://doi.org/10.1007/s11468-008-9066-y

    Article  Google Scholar 

  9. Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377–445 (1908). https://doi.org/10.1002/andp.19083300302

    Article  MATH  Google Scholar 

  10. Gans, R.: Über die Form ultramikroskopischer Goldteilchen. Ann. Phys. 342, 881–900 (1912). https://doi.org/10.1002/andp.19123420503

    Article  MATH  Google Scholar 

  11. Gans, R.: Über die Form ultramikroskopischer Silberteilchen. Ann. Phys. 352, 270–284 (1915). https://doi.org/10.1002/andp.19153521006

    Article  Google Scholar 

  12. Odom, T.W., Schatz, G.C.: Introduction to plasmonics. Chem. Rev. 111, 3667–3668 (2011). https://doi.org/10.1021/cr2001349

    Article  Google Scholar 

  13. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370

    Article  Google Scholar 

  14. Litinskaya MBT-RM in MS and ME: Polaritons☆. Elsevier (2019)

    Google Scholar 

  15. Fukui, M., Okamoto, T., Haraguchi, M.: Chapter 3—linear and nonlinear optical response of concentric metallic nanoshells. In: Kawata, S., Masuhara HBT-HN (eds.) Nanoplasmonics, pp. 31–54. Elsevier (2006)

    Google Scholar 

  16. Wang, X., Deng, Y., Li, Q., et al.: Excitation and propagation of surface plasmon polaritons on a non-structured surface with a permittivity gradient. Light Sci. Appl. 5, e16179–e16179 (2016). https://doi.org/10.1038/lsa.2016.179

    Article  Google Scholar 

  17. Ashoori, R.C.: Electrons in artificial atoms. Nature 379, 413–419 (1996). https://doi.org/10.1038/379413a0

    Article  Google Scholar 

  18. Henini, M.: Quantum dot nanostructures. Mater. Today 5, 48–53 (2002). https://doi.org/10.1016/S1369-7021(02)00639-9

    Article  Google Scholar 

  19. Brus, L.E.: Electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984). https://doi.org/10.1063/1.447218

    Article  Google Scholar 

  20. Brus, L.: Zero-dimensional “excitons” in semiconductor clusters. IEEE J. Quant. Electron. 22, 1909–1914 (1986). https://doi.org/10.1109/JQE.1986.1073184

    Article  Google Scholar 

  21. Bawendi, M.G., Carroll, P.J., Wilson, W.L., Brus, L.E.: Luminescence properties of CdSe quantum crystallites: resonance between interior and surface localized states. J. Chem. Phys. 96, 946–954 (1992). https://doi.org/10.1063/1.462114

    Article  Google Scholar 

  22. Brus, L.: Quantum crystallites and nonlinear optics. Appl. Phys. A 53, 465–474 (1991). https://doi.org/10.1007/BF00331535

    Article  Google Scholar 

  23. Brus, L.: Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986). https://doi.org/10.1021/j100403a003

    Article  Google Scholar 

  24. Bagga, A., Chattopadhyay, P.K., Ghosh, S.: Stokes shift in quantum dots: origin of dark exciton. In: 2007 International Workshop on Physics of Semiconductor Devices. pp. 876–879 (2007)

    Google Scholar 

  25. Wannier, G.H.: The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937). https://doi.org/10.1103/PhysRev.52.191

    Article  MATH  Google Scholar 

  26. Frenkel, J.: On the transformation of light into heat in solids. I. Phys. Rev. 37, 17–44 (1931). https://doi.org/10.1103/PhysRev.37.17

    Article  MATH  Google Scholar 

  27. Knoester, J.: Agranovich, V.M.: (2003) Frenkel and charge-transfer excitons in organic solids. In: Electronic Excitations in Organic Nanostructures, pp. 1–96. Academic Press

    Google Scholar 

  28. Mandal, S., Selvakannan, P.R., Pasricha, R., Sastry, M.: Keggin Ions as UV-switchable reducing agents in the synthesis of Au Core−Ag shell nanoparticles. J. Am. Chem. Soc. 125, 8440–8441 (2003). https://doi.org/10.1021/ja034972t

    Article  Google Scholar 

  29. Taton, T.A., Mirkin, C.A., Letsinger, R.L.: Scanometric DNA array detection with nanoparticle probes. Science (80-) 289, 1757–1760 (2000). https://doi.org/10.1126/science.289.5485.1757

    Article  Google Scholar 

  30. Kamat, P.V.: Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106, 7729–7744 (2002). https://doi.org/10.1021/jp0209289

    Article  Google Scholar 

  31. Elghanian, R., Storhoff, J.J., Mucic, R.C., et al.: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science (80-) 277, 1078–1081 (1997). https://doi.org/10.1126/science.277.5329.1078

    Article  Google Scholar 

  32. Link, S., Burda, C., Nikoobakht, B., El-Sayed, M.A.: How long does it take to melt a gold nanorod?: a femtosecond pump–probe absorption spectroscopic study. Chem. Phys. Lett. 315, 12–18 (1999). https://doi.org/10.1016/S0009-2614(99)01214-2

    Article  Google Scholar 

  33. Ahmadi, T.S., Wang, Z.L., Green, T.C., et al.: Shape-controlled synthesis of colloidal platinum nanoparticles. Science (80-) 272, 1924–1925 (1996). https://doi.org/10.1126/science.272.5270.1924

    Article  Google Scholar 

  34. Chen, H.M., Liu, R.-S.: Architecture of metallic nanostructures: synthesis strategy and specific applications. J. Phys. Chem. C 115, 3513–3527 (2011). https://doi.org/10.1021/jp108403r

    Article  Google Scholar 

  35. Jeevanandam, J., Barhoum, A., Chan, Y.S., et al.: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018). https://doi.org/10.3762/bjnano.9.98

    Article  Google Scholar 

  36. Hunt, E.M., Hampikian, J.M.: Ion implantation-induced nanoscale particle formation in Al2O3 and SiO2 via reduction. Acta Mater. 47, 1497–1511 (1999). https://doi.org/10.1016/S1359-6454(99)00028-2

    Article  Google Scholar 

  37. Hunt, E.M., Hampikian, J.M.: Implantation parameters affecting aluminum nano-particle formation in alumina. J. Mater. Sci. 36, 1963–1973 (2001). https://doi.org/10.1023/A:1017562311310

    Article  Google Scholar 

  38. McHargue, C.J., Ren, S.X., Hunn, J.D.: Nanometer-size dispersions of iron in sapphire prepared by ion implantation and annealing. Mater. Sci. Eng. A 253, 1–7 (1998). https://doi.org/10.1016/S0921-5093(98)00722-9

    Article  Google Scholar 

  39. Sharma, S.K., Pujari, P.K.: Embedded Si nanoclusters in α-alumina synthesized by ion implantation: an investigation using depth dependent Doppler broadening spectroscopy. J. Alloys Compd. 715, 247–253 (2017). https://doi.org/10.1016/j.jallcom.2017.04.285

    Article  Google Scholar 

  40. Sigmund, P.: Mechanisms and theory of physical sputtering by particle impact. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact Mater. Atoms 27, 1–20 (1987). https://doi.org/10.1016/0168-583X(87)90004-8

    Article  MathSciNet  Google Scholar 

  41. Thompson, M.W.: II. The energy spectrum of ejected atoms during the high energy sputtering of gold. Philos. Mag. A J. Theor. Exp. Appl. Phys. 18, 377–414 (1968). https://doi.org/10.1080/14786436808227358

    Article  Google Scholar 

  42. Rashid, J., Barakat, M.A., Salah, N., Habib, S.S.: ZnO-nanoparticles thin films synthesized by RF sputtering for photocatalytic degradation of 2-chlorophenol in synthetic wastewater. J. Ind. Eng. Chem. 23, 134–139 (2015). https://doi.org/10.1016/j.jiec.2014.08.006

    Article  Google Scholar 

  43. Fumitaka, Mafuné, Kohno, J., Takeda, Y., et al.: Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B 104, 9111–9117 (2000). https://doi.org/10.1021/jp001336y

    Article  Google Scholar 

  44. Kudryashov, I.S., Samokhvalov, A.A., Nastulyavichus, A.A., et al.: Nanosecond-laser generation of nanoparticles in liquids: from ablation through bubble dynamics to nanoparticle yield. Materials 12 (2019)

    Article  Google Scholar 

  45. Ganjali, M., Vahdatkhah, P., Marashi, S.M.B.: Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase. Proc. Mater. Sci. 11, 359–363 (2015). https://doi.org/10.1016/j.mspro.2015.11.127

    Article  Google Scholar 

  46. Matsubara, M., Yamaki, T., Itoh, H., et al.: Preparation of TiO2 nanoparticles by pulsed laser ablation: ambient pressure dependence of crystallization. Jpn. J. Appl. Phys. 42, L479–L481 (2003). https://doi.org/10.1143/jjap.42.l479

    Article  Google Scholar 

  47. Tsai, S.C., Song, Y.L., Tsai, C.S., et al.: Ultrasonic spray pyrolysis for nanoparticles synthesis. J. Mater. Sci. 39, 3647–3657 (2004). https://doi.org/10.1023/B:JMSC.0000030718.76690.11

    Article  Google Scholar 

  48. Gavrilović, T.V., Jovanović, D.J., Dramićanin, M.D.: Chapter 2—synthesis of multifunctional inorganic materials: from micrometer to nanometer dimensions. In: Bhanvase, B.A., Pawade, V.B., Dhoble, S.J., et al. (eds.) Micro and Nano Technologies, pp 55–81. Elsevier (2018)

    Google Scholar 

  49. Gröhn, A.J., Pratsinis, S.E., Sánchez-Ferrer, A., et al.: Scale-up of nanoparticle synthesis by flame spray pyrolysis: the high-temperature particle residence time. Ind. Eng. Chem. Res. 53, 10734–10742 (2014). https://doi.org/10.1021/ie501709s

    Article  Google Scholar 

  50. Sunkari, S., Gangapuram, B.R., Dadigala, R., et al.: Microwave-irradiated green synthesis of gold nanoparticles for catalytic and anti-bacterial activity. J. Anal. Sci. Technol. 8, 13 (2017). https://doi.org/10.1186/s40543-017-0121-1

    Article  Google Scholar 

  51. Milkin, S.S., Starodubov, A.V., Herman, S.V., et al.: On the interaction of electromagnetic microwave radiation with emulsion containing magnetic nanoparticles. In: 2014 24th International Crimean Conference Microwave & Telecommunication Technology, pp. 968–969 (2014)

    Google Scholar 

  52. Sander, M.S., Gao, H.: aligned arrays of nanotubes and segmented nanotubes on substrates fabricated by electrodeposition onto nanorods. J. Am. Chem. Soc. 127, 12158–12159 (2005). https://doi.org/10.1021/ja0522231

    Article  Google Scholar 

  53. Maillard, M., Giorgio, S., Pileni, M.-P.: Silver nanodisks. Adv. Mater. 14, 1084–1086 (2002). https://doi.org/10.1002/1521-4095(20020805)14:15%3c1084:AID-ADMA1084%3e3.0.CO;2-L

    Article  Google Scholar 

  54. Toneguzzo, P., Viau, G., Acher, O., et al.: CoNi and FeCoNi fine particles prepared by the polyol process: physico-chemical characterization and dynamic magnetic properties. J. Mater. Sci. 35, 3767–3784 (2000). https://doi.org/10.1023/A:1004864927169

    Article  Google Scholar 

  55. Yener, D.O., Sindel, J., Randall, C.A., Adair, J.H.: Synthesis of nanosized silver platelets in octylamine-water bilayer systems. Langmuir 18, 8692–8699 (2002). https://doi.org/10.1021/la011229a

    Article  Google Scholar 

  56. Murphy, C.J., Sau, T.K., Gole, A.M., et al.: Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005). https://doi.org/10.1021/jp0516846

    Article  Google Scholar 

  57. Huang, L.M., Wang, H.T., Wang, Z.B., et al.: Nanowire arrays electrodeposited from liquid crystalline phases. Adv. Mater. 14, 61–64 (2002). https://doi.org/10.1002/1521-4095(20020104)14:1%3c61:AID-ADMA61%3e3.0.CO;2-Y

    Article  Google Scholar 

  58. Whitney, T.M., Searson, P.C., Jiang, J.S., Chien, C.L.: Fabrication and magnetic properties of arrays of metallic nanowires. Science (80-) 261, 1316–1319 (1993). https://doi.org/10.1126/science.261.5126.1316

    Article  Google Scholar 

  59. Murphy, C.J., Gole, A.M., Hunyadi, S.E., Orendorff, C.J.: One-dimensional colloidal gold and silver nanostructures. Inorg. Chem. 45, 7544–7554 (2006). https://doi.org/10.1021/ic0519382

    Article  Google Scholar 

  60. Nicewarner-Peña, S.R., Freeman, R.G., Reiss, B.D., et al.: Submicrometer metallic barcodes. Science (80-) 294, 137–141 (2001). https://doi.org/10.1126/science.294.5540.137

    Article  Google Scholar 

  61. Wiley, B., Sun, Y., Mayers, B., Xia, Y.: Shape-controlled synthesis of metal nanostructures: the case of silver. Chem.—Eur. J. 11, 454–463 (2005). https://doi.org/10.1002/chem.200400927

    Article  Google Scholar 

  62. Sun, Y., Xia, Y.: Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 14, 833–837 (2002). https://doi.org/10.1002/1521-4095(20020605)14:11%3c833:AID-ADMA833%3e3.0.CO;2-K

    Article  Google Scholar 

  63. Sun, Y., Xia, Y.: Multiple-walled nanotubes made of metals. Adv. Mater. 16, 264–268 (2004). https://doi.org/10.1002/adma.200305780

    Article  Google Scholar 

  64. Lee, J.S., Suh, J.S.: Uniform field emission from aligned carbon nanotubes prepared by CO disproportionation. J. Appl. Phys. 92, 7519–7522 (2002). https://doi.org/10.1063/1.1525063

    Article  Google Scholar 

  65. Sun, Y., Xia, Y.: Triangular nanoplates of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Adv. Mater. 15, 695–699 (2003). https://doi.org/10.1002/adma.200304652

    Article  Google Scholar 

  66. Sun, Y., Xia, Y.: Mechanistic Study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 126, 3892–3901 (2004). https://doi.org/10.1021/ja039734c

    Article  Google Scholar 

  67. Sun, Y., Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science (80-) 298, 2176–2179 (2002). https://doi.org/10.1126/science.1077229

    Article  Google Scholar 

  68. Sun, Y., Xia, Y.: Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett. 3, 1569–1572 (2003). https://doi.org/10.1021/nl034765r

    Article  Google Scholar 

  69. Sun, Y., Mayers, B., Xia, Y.: Metal nanostructures with hollow interiors. Adv. Mater. 15, 641–646 (2003). https://doi.org/10.1002/adma.200301639

    Article  Google Scholar 

  70. Sun, Y., Mayers, B.T., Xia, Y.: Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2, 481–485 (2002). https://doi.org/10.1021/nl025531v

    Article  Google Scholar 

  71. Frens, G.: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20–22 (1973). https://doi.org/10.1038/physci241020a0

    Article  Google Scholar 

  72. Pong, B.-K., Elim, H.I., Chong, J.-X., et al.: New insights on the nanoparticle growth mechanism in the citrate reduction of Gold(III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. J. Phys. Chem. C 111, 6281–6287 (2007). https://doi.org/10.1021/jp068666o

    Article  Google Scholar 

  73. Kimling, J., Maier, M., Okenve, B., et al.: Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110, 15700–15707 (2006). https://doi.org/10.1021/jp061667w

    Article  Google Scholar 

  74. Frens, G.: Particle size and sol stability in metal colloids. Kolloid-Zeitschrift und Zeitschrift für Polym 250, 736–741 (1972). https://doi.org/10.1007/BF01498565

    Article  Google Scholar 

  75. Turkevich, J., Stevenson, P.C., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951). https://doi.org/10.1039/DF9511100055

    Article  Google Scholar 

  76. Larm, N.E., Essner, J.B., Pokpas, K., et al.: Room-temperature Turkevich method: formation of gold nanoparticles at the speed of mixing using cyclic oxocarbon reducing agents. J. Phys. Chem. C 122, 5105–5118 (2018). https://doi.org/10.1021/acs.jpcc.7b10536

    Article  Google Scholar 

  77. Sajanlal, P.R., Sreeprasad, T.S., Samal, A.K., Pradeep, T.: Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Rev. 2, 5883 (2011). https://doi.org/10.3402/nano.v2i0.5883

    Article  Google Scholar 

  78. Wiley, B., Sun, Y., Xia, Y.: Synthesis of Silver nanostructures with controlled shapes and properties. Acc. Chem. Res. 40, 1067–1076 (2007). https://doi.org/10.1021/ar7000974

    Article  Google Scholar 

  79. Phiri, M.M., Mulder, D.W., Vorster, B.C.: Seedless gold nanostars with seed-like advantages for biosensing applications. R. Soc. Open Sci. 6, 181971 (2019). https://doi.org/10.1098/rsos.181971

    Article  Google Scholar 

  80. Liu, B., Zeng, H.C.: Fabrication of ZnO “Dandelions” via a modified Kirkendall process. J. Am. Chem. Soc. 126, 16744–16746 (2004). https://doi.org/10.1021/ja044825a

    Article  Google Scholar 

  81. Yang, H.G., Zeng, H.C.: Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 108, 3492–3495 (2004). https://doi.org/10.1021/jp0377782

    Article  Google Scholar 

  82. Yin, Y., Rioux, R.M., Erdonmez, C.K., et al.: Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science (80-) 304, 711–714 (2004). https://doi.org/10.1126/science.1096566

    Article  Google Scholar 

  83. Chang, Y., Lye, M.L., Zeng, H.C.: Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir 21, 3746–3748 (2005). https://doi.org/10.1021/la050220w

    Article  Google Scholar 

  84. Zeng, H.C.: Synthetic architecture of interior space for inorganic nanostructures. J. Mater. Chem. 16, 649–662 (2006). https://doi.org/10.1039/B511296F

    Article  Google Scholar 

  85. Brust, M., Fink, J., Bethell, D., et al.: Synthesis and reactions of functionalised gold nanoparticles. J. Chem. Soc. Chem. Commun., 1655–1656 (1995). https://doi.org/10.1039/C39950001655

  86. da Silva, A.G.M., Rodrigues, T.S., Haigh, S.J., Camargo, P.H.C.: Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chem. Commun. 53, 7135–7148 (2017). https://doi.org/10.1039/C7CC02352A

    Article  Google Scholar 

  87. Bansal, V., O’Mullane, A.P., Bhargava, S.K.: Galvanic replacement mediated synthesis of hollow Pt nanocatalysts: significance of residual Ag for the H2 evolution reaction. Electrochem. Commun. 11, 1639–1642 (2009). https://doi.org/10.1016/j.elecom.2009.06.018

    Article  Google Scholar 

  88. Chen, H.M., Liu, R.-S., Lo, M.-Y., et al.: Hollow platinum spheres with nano-channels: synthesis and enhanced catalysis for oxygen reduction. J. Phys. Chem. C 112, 7522–7526 (2008). https://doi.org/10.1021/jp8017698

    Article  Google Scholar 

  89. Liu, X., Wang, D., Li, Y.: Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 7, 448–466 (2012). https://doi.org/10.1016/j.nantod.2012.08.003

    Article  Google Scholar 

  90. Teng, X., Wang, Q., Liu, P., et al.: Formation of Pd/Au nanostructures from pd nanowires via galvanic replacement reaction. J. Am. Chem. Soc. 130, 1093–1101 (2008). https://doi.org/10.1021/ja077303e

    Article  Google Scholar 

  91. Cobley, C.M., Xia, Y.: Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater. Sci. Eng. R. Rep. 70, 44–62 (2010). https://doi.org/10.1016/j.mser.2010.06.002

    Article  Google Scholar 

  92. Talapin, D.V., Lee, J.-S., Kovalenko, M.V., Shevchenko, E.V.: Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010). https://doi.org/10.1021/cr900137k

    Article  Google Scholar 

  93. Somers, R.C., Bawendi, M.G., Nocera, D.G.: CdSe nanocrystal based chem-/bio- sensors. Chem. Soc. Rev. 36, 579–591 (2007). https://doi.org/10.1039/B517613C

    Article  Google Scholar 

  94. Peng, X., Chen, J., Misewich, J.A., Wong, S.S.: Carbon nanotube–nanocrystal heterostructures. Chem. Soc. Rev. 38, 1076–1098 (2009). https://doi.org/10.1039/B811424M

    Article  Google Scholar 

  95. Rogach, A.L., Klar, T.A., Lupton, J.M., et al.: Energy transfer with semiconductor nanocrystals. J. Mater. Chem. 19, 1208–1221 (2009). https://doi.org/10.1039/B812884G

    Article  Google Scholar 

  96. Frey, N.A., Peng, S., Cheng, K., Sun, S.: Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009). https://doi.org/10.1039/B815548H

    Article  Google Scholar 

  97. de Mello, Donegá C., Liljeroth, P., Vanmaekelbergh, D.: physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 1, 1152–1162 (2005). https://doi.org/10.1002/smll.200500239

    Article  Google Scholar 

  98. Nie, Z., Petukhova, A., Kumacheva, E.: Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5, 15–25 (2010). https://doi.org/10.1038/nnano.2009.453

    Article  Google Scholar 

  99. Hillhouse, H.W., Beard, M.C.: Solar cells from colloidal nanocrystals: fundamentals, materials, devices, and economics. Curr. Opin. Colloid Interface Sci. 14, 245–259 (2009). https://doi.org/10.1016/j.cocis.2009.05.002

    Article  Google Scholar 

  100. Konstantatos, G., Sargent, E.H.: Nanostructured materials for photon detection. Nat. Nanotechnol. 5, 391–400 (2010). https://doi.org/10.1038/nnano.2010.78

    Article  Google Scholar 

  101. van Sark, W.G.J.H.M., Barnham, K.W.J., Slooff, L.H., et al.: Luminescent solar concentrators—a review of recent results. Opt. Express 16, 21773–21792 (2008). https://doi.org/10.1364/OE.16.021773

    Article  Google Scholar 

  102. Holder, E., Tessler, N., Rogach, A.L.: Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices. J. Mater. Chem. 18, 1064–1078 (2008). https://doi.org/10.1039/B712176H

    Article  Google Scholar 

  103. Wood, V., Panzer, M.J., Caruge, J.-M., et al.: Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture. Nano Lett. 10, 24–29 (2010). https://doi.org/10.1021/nl902425g

    Article  Google Scholar 

  104. Michalet, X., Pinaud, F.F., Bentolila, L.A., et al.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science (80-) 307, 538–544 (2005). https://doi.org/10.1126/science.1104274

    Article  Google Scholar 

  105. Robinson, R.D., Sadtler, B., Demchenko, D.O., et al.: Spontaneous superlattice formation in nanorods through partial cation exchange. Science (80-) 317, 355–358 (2007). https://doi.org/10.1126/science.1142593

    Article  Google Scholar 

  106. Milliron, D.J., Hughes, S.M., Cui, Y., et al.: Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 (2004). https://doi.org/10.1038/nature02695

    Article  Google Scholar 

  107. Mokari, T., Rothenberg, E., Popov, I., et al.: Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science (80-) 304, 1787–1790 (2004). https://doi.org/10.1126/science.1097830

    Article  Google Scholar 

  108. Talapin, D.V., Nelson, J.H., Shevchenko, E.V., et al.: Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7, 2951–2959 (2007). https://doi.org/10.1021/nl072003g

    Article  Google Scholar 

  109. Steiner, D., Dorfs, D., Banin, U., et al.: Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy. Nano Lett. 8, 2954–2958 (2008). https://doi.org/10.1021/nl801848x

    Article  Google Scholar 

  110. Reiss, P., Protière, M., Li, L.: Core/Shell semiconductor nanocrystals. Small 5, 154–168 (2009). https://doi.org/10.1002/smll.200800841

    Article  Google Scholar 

  111. Cozzoli, P.D., Pellegrino, T., Manna, L.: Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 35, 1195–1208 (2006). https://doi.org/10.1039/B517790C

    Article  Google Scholar 

  112. Costi, R., Saunders, A.E., Banin, U.: Colloidal hybrid nanostructures: a new type of functional materials. Angew Chemie Int. Ed. 49, 4878–4897 (2010). https://doi.org/10.1002/anie.200906010

    Article  Google Scholar 

  113. Casavola, M., Buonsanti, R., Caputo, G., Cozzoli, P.D.: Colloidal strategies for preparing oxide-based hybrid nanocrystals. Eur. J. Inorg. Chem. 2008, 837–854 (2008). https://doi.org/10.1002/ejic.200701047

    Article  Google Scholar 

  114. de Mello Donegá, C.: Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 40, 1512–1546 (2011). https://doi.org/10.1039/C0CS00055H

    Article  Google Scholar 

  115. Koole, R., Luigjes, B., Tachiya, M., et al.: Differences in cross-link chemistry between rigid and flexible dithiol molecules revealed by optical studies of CdTe quantum dots. J. Phys. Chem. C 111, 11208–11215 (2007). https://doi.org/10.1021/jp072407x

    Article  Google Scholar 

  116. Kairdolf, B.A., Smith, A.M., Nie, S.: One-pot synthesis, encapsulation, and solubilization of size-tuned quantum dots with amphiphilic multidentate ligands. J. Am. Chem. Soc. 130, 12866–12867 (2008). https://doi.org/10.1021/ja804755q

    Article  Google Scholar 

  117. Yu, W.W., Wang, Y.A., Peng, X.: Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chem. Mater. 15, 4300–4308 (2003). https://doi.org/10.1021/cm034729t

    Article  Google Scholar 

  118. Qu, L., Peng, X.: Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124, 2049–2055 (2002). https://doi.org/10.1021/ja017002j

    Article  Google Scholar 

  119. Peng, Z.A., Peng, X.: Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002). https://doi.org/10.1021/ja0173167

    Article  Google Scholar 

  120. Peng, Z.A., Peng, X.: Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 123, 1389–1395 (2001). https://doi.org/10.1021/ja0027766

    Article  Google Scholar 

  121. Peng, Z.A., Peng, X.: Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2001). https://doi.org/10.1021/ja003633m

    Article  Google Scholar 

  122. Peng, X., Wickham, J., Alivisatos, A.P.: Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc. 120, 5343–5344 (1998). https://doi.org/10.1021/ja9805425

    Article  Google Scholar 

  123. Peng, X., Manna, L., Yang, W., et al.: Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000). https://doi.org/10.1038/35003535

    Article  Google Scholar 

  124. Singh, R.D., Shandilya, R., Bhargava, A., et al.: Quantum dot based nano-biosensors for detection of circulating cell free miRNAs in lung carcinogenesis: from biology to clinical translation. Front. Genet. 9, 616 (2018). https://doi.org/10.3389/fgene.2018.00616

    Article  Google Scholar 

  125. Menagen, G., Macdonald, J.E., Shemesh, Y., et al.: Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms. J. Am. Chem. Soc. 131, 17406–17411 (2009). https://doi.org/10.1021/ja9077733

    Article  Google Scholar 

  126. Mokari, T., Sztrum, C.G., Salant, A., et al.: Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat. Mater. 4, 855 (2005)

    Article  Google Scholar 

  127. Shemesh, Y., Macdonald, J.E., Menagen, G., Banin, U.: Synthesis and photocatalytic properties of a family of CdS-PdX hybrid nanoparticles. Angew Chemie Int. Ed. 50, 1185–1189 (2011). https://doi.org/10.1002/anie.201006407

    Article  Google Scholar 

  128. Habas, S.E., Yang, P., Mokari, T.: Selective growth of metal and binary metal tips on CdS nanorods. J. Am. Chem. Soc. 130, 3294–3295 (2008). https://doi.org/10.1021/ja800104w

    Article  Google Scholar 

  129. Dukovic, G., Merkle, M.G., Nelson, J.H., et al.: Photodeposition of Pt on colloidal CdS and CdSe/CdS semiconductor nanostructures. Adv. Mater. 20, 4306–4311 (2008). https://doi.org/10.1002/adma.200800384

    Article  Google Scholar 

  130. Banin, U., Ben-Shahar, Y., Vinokurov, K.: Hybrid semiconductor-metal nanoparticles: from architecture to function. Chem. Mater. 26, 97–110 (2014). https://doi.org/10.1021/cm402131n

    Article  Google Scholar 

  131. Li, M., Cushing, S.K., Wang, Q., et al.: Size-dependent energy transfer between CdSe/ZnS quantum dots and gold nanoparticles. J. Phys. Chem. Lett. 2, 2125–2129 (2011). https://doi.org/10.1021/jz201002g

    Article  Google Scholar 

  132. Maneeprakorn, W., Malik, M.A., O’Brien, P.: Developing chemical strategies for the assembly of nanoparticles into mesoscopic objects. J. Am. Chem. Soc. 132, 1780–1781 (2010). https://doi.org/10.1021/ja910022q

    Article  Google Scholar 

  133. Chang, E., Miller, J.S., Sun, J., et al.: Protease-activated quantum dot probes. Biochem. Biophys. Res. Commun. 334, 1317–1321 (2005). https://doi.org/10.1016/j.bbrc.2005.07.028

    Article  Google Scholar 

  134. Aldeek, F., Ji, X., Mattoussi, H.: Quenching of quantum dot emission by fluorescent gold clusters: what it does and does not share with the Förster formalism. J. Phys. Chem. C 117, 15429–15437 (2013). https://doi.org/10.1021/jp404952x

    Article  Google Scholar 

  135. Roller, E.-M., Argyropoulos, C., Högele, A., et al.: Plasmon-exciton coupling using DNA templates. Nano Lett. 16, 5962–5966 (2016). https://doi.org/10.1021/acs.nanolett.6b03015

    Article  Google Scholar 

  136. Cohen-Hoshen, E., Bryant, G.W., Pinkas, I., et al.: Exciton-Plasmon interactions in quantum dot-gold nanoparticle structures. Nano Lett. 12, 4260–4264 (2012). https://doi.org/10.1021/nl301917d

    Article  Google Scholar 

  137. Schreiber, R., Do, J., Roller, E.-M., et al.: Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat. Nanotechnol. 9, 74 (2013)

    Article  Google Scholar 

  138. Ko, S.H., Du, K., Liddle, J.A.: Quantum-dot fluorescence lifetime engineering with DNA origami constructs. Angew Chemie Int. Ed. 52, 1193–1197 (2013). https://doi.org/10.1002/anie.201206253

    Article  Google Scholar 

  139. Shevchenko, E.V., Talapin, D.V., Kotov, N.A., et al.: Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006). https://doi.org/10.1038/nature04414

    Article  Google Scholar 

  140. Lee, J., Hernandez, P., Lee, J., et al.: Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat. Mater. 6, 291–295 (2007). https://doi.org/10.1038/nmat1869

    Article  Google Scholar 

  141. Lee, J., Govorov, A.O., Dulka, J., Kotov, N.A.: Bioconjugates of CdTe nanowires and Au nanoparticles: Plasmon−Exciton interactions, luminescence enhancement, and collective effects. Nano Lett. 4, 2323–2330 (2004). https://doi.org/10.1021/nl048669h

    Article  Google Scholar 

  142. Ji, B., Giovanelli, E., Habert, B., et al.: Non-blinking quantum dot with a plasmonic nanoshell resonator. Nat. Nanotechnol. 10, 170–175 (2015). https://doi.org/10.1038/nnano.2014.298

    Article  Google Scholar 

  143. Chen, S., Thota, S., Reggiano, G., Zhao, J.: Generalized seeded growth of Ag-based metal chalcogenide nanorods via controlled chalcogenization of the seeds. J. Mater. Chem. C 3, 11842–11849 (2015). https://doi.org/10.1039/C5TC02904J

    Article  Google Scholar 

  144. Samanta, A., Zhou, Y., Zou, S., et al.: Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler. Nano Lett. 14, 5052–5057 (2014). https://doi.org/10.1021/nl501709s

    Article  Google Scholar 

  145. Zhang, L., Blom, D.A., Wang, H.: Au–Cu2O core-shell nanoparticles: a hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chem. Mater. 23, 4587–4598 (2011). https://doi.org/10.1021/cm202078t

    Article  Google Scholar 

  146. Ozel, T., Hernandez-Martinez, P.L., Mutlugun, E., et al.: Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons. Nano Lett. 13, 3065–3072 (2013). https://doi.org/10.1021/nl4009106

    Article  Google Scholar 

  147. Chen, Y., Vela, J., Htoon, H., et al.: “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008). https://doi.org/10.1021/ja711379k

    Article  Google Scholar 

  148. Ma, X., Tan, H., Kipp, T., Mews, A.: Fluorescence enhancement, blinking suppression, and gray states of individual semiconductor nanocrystals close to gold nanoparticles. Nano Lett. 10, 4166–4174 (2010). https://doi.org/10.1021/nl102451c

    Article  Google Scholar 

  149. Munechika, K., Chen, Y., Tillack, A.F., et al.: Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms. Nano Lett. 10, 2598–2603 (2010). https://doi.org/10.1021/nl101281a

    Article  Google Scholar 

  150. Naiki, H., Uedao, T., Wang, L., et al.: Multiphoton emission enhancement from a single colloidal quantum dot using SiO2-coated silver nanoparticles. ACS Omega 2, 728–737 (2017). https://doi.org/10.1021/acsomega.6b00520

    Article  Google Scholar 

  151. LeBlanc, S.J., McClanahan, M.R., Jones, M., Moyer, P.J.: Enhancement of multiphoton emission from single CdSe quantum dots coupled to gold films. Nano Lett. 13, 1662–1669 (2013). https://doi.org/10.1021/nl400117h

    Article  Google Scholar 

  152. Park, Y.-S., Ghosh, Y., Chen, Y., et al.: Super-Poissonian statistics of photon emission from single CdSe-CdS core-shell nanocrystals coupled to metal nanostructures. Phys. Rev. Lett. 110, 117401 (2013). https://doi.org/10.1103/PhysRevLett.110.117401

    Article  Google Scholar 

  153. Dey, S., Zhou, Y., Tian, X., et al.: An experimental and theoretical mechanistic study of biexciton quantum yield enhancement in single quantum dots near gold nanoparticles. Nanoscale 7 (2015). https://doi.org/10.1039/c5nr00274e

    Article  Google Scholar 

  154. Wax, T.J., Dey, S., Chen, S., et al.: Excitation wavelength-dependent photoluminescence decay of hybrid gold/quantum dot nanostructures. ACS Omega 3 (2018). https://doi.org/10.1021/acsomega.8b01959

    Article  Google Scholar 

  155. Zhou, N., Yuan, M., Gao, Y., et al.: Silver nanoshell plasmonically controlled emission of semiconductor quantum dots in the strong coupling regime. ACS Nano 10, 4154–4163 (2016). https://doi.org/10.1021/acsnano.5b07400

    Article  Google Scholar 

  156. Santhosh, K., Bitton, O., Chuntonov, L., Haran, G.: Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 7, ncomms11823 (2016). https://doi.org/10.1038/ncomms11823

  157. Inkson, B.J.: 2—Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In: Hübschen, G., Altpeter, I., Tschuncky, R., Herrmann H-GBT-MCUNE (NDE) M. (eds.), pp. 17–43. Woodhead Publishing (2016)

    Google Scholar 

  158. Sezen, H., Suzer, S.: XPS for chemical- and charge-sensitive analyses. Thin Solid Films 534, 1–11 (2013). https://doi.org/10.1016/j.tsf.2013.02.002

    Article  Google Scholar 

  159. Cavalcoli, D., Fraboni, B., Cavallini, A.: Chapter Seven—Surface and defect states in semiconductors investigated by surface photovoltage. In: Romano, L., Privitera, V., Jagadish, S. (eds.) Defects in Semiconductors, pp. 251–278. Elsevier (2015)

    Google Scholar 

  160. Bisquert, J., Bertoluzzi, L., Mora-Sero, I., Garcia-Belmonte, G.: Theory of impedance and capacitance spectroscopy of solar cells with dielectric relaxation, drift-diffusion transport, and recombination. J. Phys. Chem. C 118, 18983–18991 (2014). https://doi.org/10.1021/jp5062144

    Article  Google Scholar 

  161. Braña, A.F., Forniés, E., López, N., García, B.J.: High efficiency Si solar cells characterization using impedance spectroscopy analysis. J. Phys: Conf. Ser. 647, 12069 (2015). https://doi.org/10.1088/1742-6596/647/1/012069

    Article  Google Scholar 

  162. Wang, Q., Moser, J.-E., Grätzel, M.: Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945–14953 (2005). https://doi.org/10.1021/jp052768h

    Article  Google Scholar 

  163. Wu, J.-L., Chen, F.-C., Hsiao, Y.-S., et al.: Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 5, 959–967 (2011). https://doi.org/10.1021/nn102295p

    Article  Google Scholar 

  164. Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010). https://doi.org/10.1038/nmat2629

    Article  Google Scholar 

  165. Jang, Y.H., Jang, Y.J., Kim, S., et al.: Plasmonic solar cells: from rational design to mechanism overview. Chem. Rev. 116, 14982–15034 (2016). https://doi.org/10.1021/acs.chemrev.6b00302

    Article  Google Scholar 

  166. Yuan, Z., Wu, Z., Bai, S., et al.: Hot-electron injection in a sandwiched TiOx–Au–TiOx structure for high-performance planar Perovskite solar cells. Adv. Energy Mater. 5, 1500038 (2015). https://doi.org/10.1002/aenm.201500038

    Article  Google Scholar 

  167. Zhu, J., Hsu, C.-M., Yu, Z., et al.: Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979–1984 (2010). https://doi.org/10.1021/nl9034237

    Article  Google Scholar 

  168. Pala, R.A., White, J., Barnard, E., et al.: Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009). https://doi.org/10.1002/adma.200900331

    Article  Google Scholar 

  169. Callahan, D.M., Munday, J.N., Atwater, H.A.: Solar cell light trapping beyond the ray optic limit. Nano Lett. 12, 214–218 (2012). https://doi.org/10.1021/nl203351k

    Article  Google Scholar 

  170. Chen, H.M., Chen, C.K., Chen, C.-J., et al.: Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. ACS Nano 6, 7362–7372 (2012). https://doi.org/10.1021/nn3024877

    Article  Google Scholar 

  171. Li, J., Cushing, S.K., Meng, F., et al.: Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photonics 9, 601 (2015)

    Article  Google Scholar 

  172. Cushing, S.K., Li, J., Meng, F., et al.: Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012). https://doi.org/10.1021/ja305603t

    Article  Google Scholar 

  173. Isah, K.U., Jolayemi, B.J., Ahmadu, U., et al.: Plasmonic effect of silver nanoparticles intercalated into mesoporous betalain-sensitized-TiO2 film electrodes on photovoltaic performance of dye-sensitized solar cells. Mater. Renew. Sustain. Energy 5, 10 (2016). https://doi.org/10.1007/s40243-016-0075-z

    Article  Google Scholar 

  174. Ihara, M., Kanno, M., Inoue, S.: Photoabsorption-enhanced dye-sensitized solar cell by using localized surface plasmon of silver nanoparticles modified with polymer. Phys E Low-dimensional Syst. Nanostruct. 42, 2867–2871 (2010). https://doi.org/10.1016/j.physe.2010.04.001

    Article  Google Scholar 

  175. Xu, Q., Liu, F., Meng, W., Huang, Y.: Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells. Opt. Express 20, A898–A907 (2012). https://doi.org/10.1364/OE.20.00A898

    Article  Google Scholar 

  176. Chen, Z.H., Tang, Y.B., Liu, C.P., et al.: Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for Schottky barrier photovoltaic cells. J. Phys. Chem. C 113, 13433–13437 (2009). https://doi.org/10.1021/jp903153w

    Article  Google Scholar 

  177. Ding, I.-K., Zhu, J., Cai, W., et al.: Plasmonic dye-sensitized solar cells. Adv. Energy Mater. 1, 52–57 (2011). https://doi.org/10.1002/aenm.201000041

    Article  Google Scholar 

  178. Li, Y., Wang, H., Feng, Q., et al.: Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy Environ. Sci. 6, 2156–2165 (2013). https://doi.org/10.1039/C3EE23971C

    Article  Google Scholar 

  179. Du, J., Qi, J., Wang, D., Tang, Z.: Facile synthesis of Au@TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ. Sci. 5, 6914–6918 (2012). https://doi.org/10.1039/C2EE21264A

    Article  Google Scholar 

  180. Chang, S., Li, Q., Xiao, X., et al.: Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods. Energy Environ. Sci. 5, 9444–9448 (2012). https://doi.org/10.1039/C2EE22657J

    Article  Google Scholar 

  181. Brown, M.D., Suteewong, T., Kumar, R.S.S., et al.: Plasmonic dye-sensitized solar cells using core−shell metal−insulator nanoparticles. Nano Lett. 11, 438–445 (2011). https://doi.org/10.1021/nl1031106

    Article  Google Scholar 

  182. Zarick, H.F., Erwin, W.R., Boulesbaa, A., et al.: Improving light harvesting in dye-sensitized solar cells using hybrid bimetallic nanostructures. ACS Photonics 3, 385–394 (2016). https://doi.org/10.1021/acsphotonics.5b00552

    Article  Google Scholar 

  183. Elbohy, H., Kim, M.R., Dubey, A., et al.: Incorporation of plasmonic Au nanostars into photoanodes for high efficiency dye-sensitized solar cells. J. Mater. Chem. A 4, 545–551 (2016). https://doi.org/10.1039/C5TA06425B

    Article  Google Scholar 

  184. Su, Y.-H., Ke, Y.-F., Cai, S.-L., Yao, Q.-Y.: Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light Sci. Appl. 1, e14–e14 (2012). https://doi.org/10.1038/lsa.2012.14

    Article  Google Scholar 

  185. Wang, Q., Butburee, T., Wu, X., et al.: Enhanced performance of dye-sensitized solar cells by doping Au nanoparticles into photoanodes: a size effect study. J. Mater. Chem. A 1, 13524–13531 (2013). https://doi.org/10.1039/C3TA12692G

    Article  Google Scholar 

  186. Sahu, G., Gordon, S.W., Tarr, M.A.: Synthesis and application of core-shell Au–TiO2 nanowire photoanode materials for dye sensitized solar cells. RSC Adv. 2, 573–582 (2012). https://doi.org/10.1039/C1RA00762A

    Article  Google Scholar 

  187. Ahn, S.H., Kim, D.J., Chi, W.S., Kim, J.H.: Plasmonic, interior-decorated, one-dimensional hierarchical nanotubes for high-efficiency, solid-state, dye-sensitized solar cells. J. Mater. Chem. A 3, 10439–10447 (2015). https://doi.org/10.1039/C5TA00801H

    Article  Google Scholar 

  188. Lee, K.-S., El-Sayed, M.A.: Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J. Phys. Chem. B 109, 20331–20338 (2005). https://doi.org/10.1021/jp054385p

    Article  Google Scholar 

  189. Kulkarni, A.P., Noone, K.M., Munechika, K., et al.: Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett. 10, 1501–1505 (2010). https://doi.org/10.1021/nl100615e

    Article  Google Scholar 

  190. Salvador, M., MacLeod, B.A., Hess, A., et al.: Electron accumulation on metal nanoparticles in Plasmon-enhanced organic solar cells. ACS Nano 6, 10024–10032 (2012). https://doi.org/10.1021/nn303725v

    Article  Google Scholar 

  191. Yao, K., Salvador, M., Chueh, C.-C., et al.: A general route to enhance polymer solar cell performance using plasmonic nanoprisms. Adv. Energy Mater. 4, 1400206 (2014). https://doi.org/10.1002/aenm.201400206

    Article  Google Scholar 

  192. Yang, X., Chueh, C.-C., Li, C.-Z., et al.: High-efficiency polymer solar cells achieved by doping plasmonic metallic nanoparticles into dual charge selecting interfacial layers to enhance light trapping. Adv. Energy Mater. 3, 666–673 (2013). https://doi.org/10.1002/aenm.201200726

    Article  Google Scholar 

  193. Wang, C.C.D., Choy, W.C.H., Duan, C., et al.: Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells. J. Mater. Chem. 22, 1206–1211 (2012). https://doi.org/10.1039/C1JM14150C

    Article  Google Scholar 

  194. You, J., Li, X., Xie, F., et al.: Surface Plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode. Adv. Energy Mater. 2, 1203–1207 (2012). https://doi.org/10.1002/aenm.201200108

    Article  Google Scholar 

  195. Choi, H., Lee, J.-P., Ko, S.-J., et al.: Multipositional Silica-coated silver nanoparticles for high-performance polymer solar cells. Nano Lett. 13, 2204–2208 (2013). https://doi.org/10.1021/nl400730z

    Article  Google Scholar 

  196. Wang, D.H., Kim, D.Y., Choi, K.W., et al.: Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of au nanoparticles. Angew Chemie Int. Ed. 50, 5519–5523 (2011). https://doi.org/10.1002/anie.201101021

    Article  Google Scholar 

  197. Oo, T.Z., Mathews, N., Xing, G., et al.: Ultrafine Gold nanowire networks as plasmonic antennae in organic photovoltaics. J. Phys. Chem. C 116, 6453–6458 (2012). https://doi.org/10.1021/jp2099637

    Article  Google Scholar 

  198. Carretero-Palacios, S., Calvo, M.E., Míguez, H.: Absorption enhancement in organic-inorganic Halide Perovskite films with embedded plasmonic gold nanoparticles. J. Phys. Chem. C 119, 18635–18640 (2015). https://doi.org/10.1021/acs.jpcc.5b06473

    Article  Google Scholar 

  199. Mali, S.S., Shim, C.S., Kim, H., et al.: In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale 8, 2664–2677 (2016). https://doi.org/10.1039/C5NR07395B

    Article  Google Scholar 

  200. Lu, Z., Pan, X., Ma, Y., et al.: Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles. RSC Adv. 5, 11175–11179 (2015). https://doi.org/10.1039/C4RA16385K

    Article  Google Scholar 

  201. Wang, H., Gonzalez-Pedro, V., Kubo, T., et al.: Enhanced carrier transport distance in colloidal PbS quantum-dot-based solar cells using ZnO nanowires. J. Phys. Chem. C 119, 27265–27274 (2015). https://doi.org/10.1021/acs.jpcc.5b09152

    Article  Google Scholar 

  202. Moroz, P., Liyanage, G., Kholmicheva, N.N., et al.: Infrared emitting PbS nanocrystal solids through matrix encapsulation. Chem. Mater. 26, 4256–4264 (2014). https://doi.org/10.1021/cm501739h

    Article  Google Scholar 

  203. Liu, X., Zhang, X.W., Meng, J.H., et al.: High efficiency Schottky junction solar cells by co-doping of graphene with gold nanoparticles and nitric acid. Appl. Phys. Lett. 106, 233901 (2015). https://doi.org/10.1063/1.4922373

    Article  Google Scholar 

  204. Li, S.-S., Tu, K.-H., Lin, C.-C., et al.: Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4, 3169–3174 (2010). https://doi.org/10.1021/nn100551j

    Article  Google Scholar 

  205. Fan, G.-Q., Zhuo, Q.-Q., Zhu, J.-J., et al.: Plasmonic-enhanced polymer solar cells incorporating solution-processable Au nanoparticle-adhered graphene oxide. J. Mater. Chem. 22, 15614–15619 (2012). https://doi.org/10.1039/C2JM31878D

    Article  Google Scholar 

  206. Wang, X., Zhi, L., Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008). https://doi.org/10.1021/nl072838r

    Article  Google Scholar 

  207. Goldschmidt, J.C., Fischer, S.: Upconversion for photovoltaics—a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 3, 510–535 (2015). https://doi.org/10.1002/adom.201500024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swayandipta Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, S. (2020). Plasmon Enhanced Hybrid Photovoltaics. In: La Porta, F., Taft, C. (eds) Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-31403-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31403-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31402-6

  • Online ISBN: 978-3-030-31403-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics