Skip to main content

Geometric Subdivision and Multiscale Transforms

  • Chapter
  • First Online:
Handbook of Variational Methods for Nonlinear Geometric Data

Abstract

Any procedure applied to data, and any quantity derived from data, is required to respect the nature and symmetries of the data. This axiom applies to refinement procedures and multiresolution transforms as well as to more basic operations like averages. This chapter discusses different kinds of geometric structures like metric spaces, Riemannian manifolds, and groups, and in what way we can make elementary operations geometrically meaningful. A nice example of this is the Riemannian metric naturally associated with the space of positive definite matrices and the intrinsic operations on positive definite matrices derived from it. We discuss averages first and then proceed to refinement operations (subdivision) and multiscale transforms. In particular, we report on the current knowledge as regards convergence and smoothness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, for all \(a,b\in {{\mathcal {M}}} \) there is a unique midpoint x = m(a, b) defined by \({\mathit {d}_{{{\mathcal {M}}}}}(x,a)={\mathit {d}_{{{\mathcal {M}}}}}(x,b)={\mathit { d}_{{{\mathcal {M}}}}}(a,b)/2\), and for any \(a,b,c\in {{\mathcal {M}}}\) and points \(a',b',c'\in {\mathbb R}^2\) which have the same pairwise distances as a, b, c, the inequality \({\mathit {d}_{{{\mathcal {M}}}}}(c,m(a,b)) \le d_{{{\mathbb R}}^2}(c',m(a',b'))\) holds.

  2. 2.

    i.e., σ obeys the law σ([v, w]) = [σ(v), σ(w)], where in the matrix group case, the Lie bracket operation is given by [v, w] = vw − wv.

  3. 3.

    Implying convergence of the linear rule S. N is the dilation factor, S is the derived rule, cf. Example 4.5.

  4. 4.

    “Stable” means existence of constants C 1, C 2 with C 1p∥≤∥S p≤ C 2p∥ for all input data where ∥p∥ :=supip i∥ is bounded. Stable rules with C n limits generate polynomials of degree ≤ n, which is a property used in the proof.

References

  1. Ballmann, W.: Lectures on Spaces of Nonpositive Curvature. Birkhäuser, Basel (1995)

    Google Scholar 

  2. Bump, D.: Lie Groups. Graduate Texts in Mathematics, vol. 225. Springer, New York (2004)

    Google Scholar 

  3. Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Computer-Aided Des. 10, 350–355 (1978)

    Article  Google Scholar 

  4. Cavaretta, A.S., Dahmen, W., Michelli, C.A.: Stationary Subdivision. Memoirs AMS, vol. 93. American Mathematical Society, Providence (1991)

    Google Scholar 

  5. Chaikin, G.: An algorithm for high speed curve generation. Comput. Graph. Image Process. 3, 346–349 (1974)

    Article  Google Scholar 

  6. de Rham, G.: Sur quelques fonctions différentiables dont toutes les valeurs sont des valeurs critiques. In: Celebrazioni Archimedee del Sec. XX (Siracusa, 1961), vol. II, pp. 61–65. Edizioni “Oderisi”, Gubbio (1962)

    Google Scholar 

  7. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes. Constr. Approx. 5, 49–68 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Basel (1992)

    Google Scholar 

  9. Donoho, D.L.: Interpolating wavelet transforms. Technical report (1992). http://www-stat.stanford.edu/donoho/Reports/1992/interpol.pdf

  10. Donoho, D.L.: Wavelet-type representation of Lie-valued data. In: Talk at the IMI “Approximation and Computation” Meeting, May 12–17, 2001, Charleston, South Carolina (2001)

    Google Scholar 

  11. Doo, D., Sabin, M.: Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Des. 10, 356–360 (1978)

    Article  Google Scholar 

  12. Duchamp, T., Xie, G., Yu, T.: On a new proximition condition for manifold-valued subdivision schemes. In: Fasshauer, G.E., Schumaker, L.L. (eds.) Approximation Theory XIV: San Antonio 2013. Springer Proceedings in Mathematics & Statistics, vol. 83, pp. 65–79. Springer, New York (2014)

    Chapter  Google Scholar 

  13. Duchamp, T., Xie, G., Yu, T.: A necessary and sufficient proximity condition for smoothness equivalence of nonlinear subdivision schemes. Found. Comput. Math. 16, 1069–1114 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duchamp, T., Xie, G., Yu, T.: Smoothing nonlinear subdivision schemes by averaging. Numer. Algorithms 77, 361–379 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dyer, R., Vegter, G., Wintraecken, M.: Barycentric coordinate neighbourhoods in Riemannian manifolds, 15 pp. (2016), arxiv https://arxiv.org/abs/1606.01585

  16. Dyer, R., Vegter, G., Wintraecken, M.: Barycentric coordinate neighbourhoods in Riemannian manifolds. In: Extended Abstracts, SoCG Young Researcher Forum, pp. 1–2 (2016)

    Google Scholar 

  17. Dyn, N.: Subdivision schemes in computer-aided geometric design. In: Light, W.A. (ed.) Advances in Numerical Analysis, vol. II, pp. 36–104. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  18. Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dyn, N., Sharon, N.: A global approach to the refinement of manifold data. Math. Comput. 86, 375–395 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dyn, N., Sharon, N.: Manifold-valued subdivision schemes based on geodesic inductive averaging. J. Comput. Appl. Math. 311, 54–67 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dyn, N., Gregory, J., Levin, D.: A four-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Des. 4, 257–268 (1987)

    Article  MATH  Google Scholar 

  22. Ebner, O.: Convergence of iterative schemes in metric spaces. Proc. Am. Math. Soc. 141, 677–686 (2013)

    Article  MATH  Google Scholar 

  23. Ebner, O.: Stochastic aspects of refinement schemes on metric spaces. SIAM J. Numer. Anal. 52, 717–734 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors. In: Sonka, M., et al. (eds.) Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. Number 3117 in LNCS, pp. 87–98. Springer, Berlin (2004)

    Google Scholar 

  25. Grohs, P.: Smoothness analysis of subdivision schemes on regular grids by proximity. SIAM J. Numer. Anal. 46, 2169–2182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grohs, P.: Smoothness equivalence properties of univariate subdivision schemes and their projection analogues. Numer. Math. 113, 163–180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grohs, P.: Smoothness of interpolatory multivariate subdivision in Lie groups. IMA J. Numer. Anal. 27, 760–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grohs, P.: Approximation order from stability of nonlinear subdivision schemes. J. Approx. Theory 162, 1085–1094 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Grohs, P.: A general proximity analysis of nonlinear subdivision schemes. SIAM J. Math. Anal. 42(2), 729–750 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Grohs, P.: Stability of manifold-valued subdivision and multiscale transforms. Constr. Approx. 32, 569–596 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Grohs, P., Wallner, J.: Log-exponential analogues of univariate subdivision schemes in Lie groups and their smoothness properties. In: Neamtu, M., Schumaker, L.L. (eds.) Approximation Theory XII: San Antonio 2007, pp. 181–190. Nashboro Press, Brentwood (2008)

    Google Scholar 

  32. Grohs, P., Wallner, J.: Interpolatory wavelets for manifold-valued data. Appl. Comput. Harmon. Anal. 27, 325–333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grohs, P., Wallner, J.: Definability and stability of multiscale decompositions for manifold-valued data. J. Franklin Inst. 349, 1648–1664 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hardering, H.: Intrinsic discretization error bounds for geodesic finite elements. PhD thesis, FU Berlin (2015)

    Google Scholar 

  35. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Academic, New York (1978)

    MATH  Google Scholar 

  36. Hüning, S., Wallner, J.: Convergence analysis of subdivision processes on the sphere (2019), submitted

    Google Scholar 

  37. Hüning, S., Wallner, J.: Convergence of subdivision schemes on Riemannian manifolds with nonpositive sectional curvature. Adv. Comput. Math. 45, 1689–1709 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Itai, U., Sharon, N.: Subdivision schemes for positive definite matrices. Found. Comput. Math. 13(3), 347–369 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  40. Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26(3), 735–747 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Moosmüller, C.: C 1 analysis of Hermite subdivision schemes on manifolds. SIAM J. Numer. Anal. 54, 3003–3031 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Moosmüller, C.: Hermite subdivision on manifolds via parallel transport. Adv. Comput. Math. 43, 1059–1074 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Peters, J., Reif, U.: Subdivision Surfaces. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  44. Reif, U.: A unified approach to subdivision algorithms near extraordinary vertices. Comput. Aided Geom. Des. 12(2), 153–174 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Riesenfeld, R.: On Chaikin’s algorithm. IEEE Comput. Graph. Appl. 4(3), 304–310 (1975)

    Google Scholar 

  46. Sturm, K.-T.: Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature. Ann. Probab. 30, 1195–1222 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sturm, K.-T.: Probability measures on metric spaces of nonpositive curvature. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, pp. 357–390. American Mathematical Society, Providence (2003)

    Google Scholar 

  48. Ur Rahman I., Drori, I., Stodden, V.C., Donoho, D.L., Schröder, P.: Multiscale representations for manifold-valued data. Multiscale Model. Simul. 4, 1201–1232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wallner, J.: Smoothness analysis of subdivision schemes by proximity. Constr. Approx. 24(3), 289–318 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wallner, J.: On convergent interpolatory subdivision schemes in Riemannian geometry. Constr. Approx. 40, 473–486 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wallner, J., Dyn, N.: Convergence and C 1 analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des. 22, 593–622 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wallner, J., Pottmann, H.: Intrinsic subdivision with smooth limits for graphics and animation. ACM Trans. Graph. 25(2), 356–374 (2006)

    Article  Google Scholar 

  53. Wallner, J., Yazdani, E.N., Grohs, P.: Smoothness properties of Lie group subdivision schemes. Multiscale Model. Simul. 6, 493–505 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wallner, J., Yazdani, E.N., Weinmann, A.: Convergence and smoothness analysis of subdivision rules in Riemannian and symmetric spaces. Adv. Comput. Math. 34, 201–218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Weinmann, A.: Nonlinear subdivision schemes on irregular meshes. Constr. Approx. 31, 395–415 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Weinmann, A.: Interpolatory multiscale representation for functions between manifolds. SIAM J. Math. Anal. 44, 172–191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Weinmann, A.: Subdivision schemes with general dilation in the geometric and nonlinear setting. J. Approx. Theory 164, 105–137 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  58. Welk, M., Weickert, J., Becker, F., Schnörr, C., Burgeth, B., Feddern, C.: Median and related local filters for tensor-valued images. Signal Process. 87, 291–308 (2007)

    Article  MATH  Google Scholar 

  59. Xie, G., Yu, T.P.-Y.: Smoothness equivalence properties of manifold-valued data subdivision schemes based on the projection approach. SIAM J. Numer. Anal. 45, 1200–1225 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Xie, G., Yu, T.P.-Y.: Smoothness equivalence properties of general manifold-valued data subdivision schemes. Multiscale Model. Simul. 7, 1073–1100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  61. Xie, G., Yu, T.P.-Y.: Smoothness equivalence properties of interpolatory Lie group subdivision schemes. IMA J. Numer. Anal. 30, 731–750 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  62. Xie, G., Yu, T.P.-Y.: Approximation order equivalence properties of manifold-valued data subdivision schemes. IMA J. Numer. Anal. 32, 687–700 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the support of the Austrian Science fund through grant No. W1230, and he also wants to thank all colleagues whose work he was able to present in this survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Wallner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wallner, J. (2020). Geometric Subdivision and Multiscale Transforms. In: Grohs, P., Holler, M., Weinmann, A. (eds) Handbook of Variational Methods for Nonlinear Geometric Data. Springer, Cham. https://doi.org/10.1007/978-3-030-31351-7_4

Download citation

Publish with us

Policies and ethics