Skip to main content

Geometric Metrics for Topological Representations

  • Chapter
  • First Online:
Handbook of Variational Methods for Nonlinear Geometric Data

Abstract

In this chapter, we present an overview of recent techniques from the emerging area of topological data analysis (TDA), with a focus on machine-learning applications. TDA methods are concerned with measuring shape-related properties of point-clouds and functions, in a manner that is invariant to topological transformations. With a careful design of topological descriptors, these methods can result in a variety of limited, yet practically useful, invariant representations. The generality of this approach results in a flexible design choice for practitioners interested in developing invariant representations from diverse data sources such as image, shapes, and time-series data. We present a survey of topological representations and metrics on those representations, discuss their relative pros and cons, and illustrate their impact on a few application areas of recent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Riemannian geometry of grassmann manifolds with a view on algorithmic computation. Acta Appl. Math. 80(2), 199–220 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  3. Adams, H., Carlsson, G.: Evasion paths in mobile sensor networks. Int. J. Robot. Res. 34(1), 90–104 (2015)

    Article  Google Scholar 

  4. Adams, H., Tausz, A., Vejdemo-Johansson, M.: Javaplex: a research software package for persistent (co) homology. In: International Congress on Mathematical Software, pp. 129–136. Springer, Berlin (2014)

    Google Scholar 

  5. Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., Ziegelmeier, L.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18(8), 1–35 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Adcock, A., Carlsson, E., Carlsson, G.: The ring of algebraic functions on persistence bar codes (2013). Preprint. arXiv:1304.0530

    Google Scholar 

  7. Anirudh, R., Venkataraman, V., Natesan Ramamurthy, K., Turaga, P.: A riemannian framework for statistical analysis of topological persistence diagrams. In: The IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 68–76 (2016)

    Google Scholar 

  8. Bae, W., Yoo, J., Chul Ye, J.: Beyond deep residual learning for image restoration: persistent homology-guided manifold simplification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 145–153 (2017)

    Google Scholar 

  9. Bagherinia, H., Manduchi, R.: A theory of color barcodes. In: IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 806–813 (2011)

    Google Scholar 

  10. Basri, R., Hassner, T., Zelnik-Manor, L.: Approximate nearest subspace search. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 266–278 (2011)

    Article  Google Scholar 

  11. Bauer, U.: Ripser: a lean c+ + code for the computation of vietoris–rips persistence barcodes. Software available at https://github.com/Ripser/ripser (2017)

  12. Bauer, U., Kerber, M., Reininghaus, J.: Distributed computation of persistent homology. In: 2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 31–38. SIAM, Philadelphia (2014)

    Google Scholar 

  13. Bauer, U., Kerber, M., Reininghaus, J., Wagner, H.: Phat–persistent homology algorithms toolbox. In: International Congress on Mathematical Software, pp. 137–143. Springer, Berlin (2014)

    Google Scholar 

  14. Begelfor, E., Werman, M.: Affine invariance revisited. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 2087–2094. IEEE, Piscataway (2006)

    Google Scholar 

  15. Bertsekas, D.P.: A new algorithm for the assignment problem. Math. Program. 21(1), 152–171 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Berwald, J., Gidea, M.: Critical transitions in a model of a genetic regulatory system (2013). Preprint. arXiv:1309.7919

    Google Scholar 

  17. Berwald, J., Gidea, M., Vejdemo-Johansson, M.: Automatic recognition and tagging of topologically different regimes in dynamical systems (2013). Preprint. arXiv:1312.2482

    Google Scholar 

  18. Binchi, J., Merelli, E., Rucco, M., Petri, G., Vaccarino, F.: jHoles: a tool for understanding biological complex networks via clique weight rank persistent homology. Electron. Notes Theor. Comput. Sci. 306, 5–18 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bonis, T., Ovsjanikov, M., Oudot, S., Chazal, F.: Persistence-based pooling for shape pose recognition. In: International Workshop on Computational Topology in Image Context, pp. 19–29. Springer, Berlin (2016)

    Google Scholar 

  20. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(1), 77–102 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Bubenik, P.: The persistence landscape and some of its properties (2018). Preprint. arXiv:1810.04963

    Google Scholar 

  22. Bubenik, P., Dłotko, P.: A persistence landscapes toolbox for topological statistics. J. Symb. Comput. 78, 91–114 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bubenik, P., Holcomb, J.: Statistical inferences from the topology of complex networks. Technical Report, Cleveland State University Cleveland United States (2016)

    Google Scholar 

  24. Cang, Z., Wei, G.W.: Analysis and prediction of protein folding energy changes upon mutation by element specific persistent homology. Bioinformatics 33(22), 3549–3557 (2017)

    Google Scholar 

  25. Cang, Z., Wei, G.W.: Topologynet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLoS Comput. Biol. 13(7), e1005690 (2017)

    Article  Google Scholar 

  26. Cang, Z., Wei, G.W.: Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction. Int. J. Numer. Methods Biomed. Eng. 34(2), e2914 (2018)

    Article  Google Scholar 

  27. Cang, Z., Mu, L., Wu, K., Opron, K., Xia, K., Wei, G.W.: A topological approach for protein classification. Comput. Math. Biophys. 3(1), 140–162 (2015)

    Article  MATH  Google Scholar 

  28. Cang, Z., Mu, L., Wei, G.W.: Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput. Biol. 14(1), e1005929 (2018)

    Article  Google Scholar 

  29. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Carriere, M., Bauer, U.: On the metric distortion of embedding persistence diagrams into reproducing kernel hilbert spaces (2018). Preprint. arXiv:1806.06924

    Google Scholar 

  31. Carriere, M., Cuturi, M., Oudot, S.: Sliced wasserstein kernel for persistence diagrams. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 664–673. JMLR.org (2017)

    Google Scholar 

  32. Chang, H.W., Bacallado, S., Pande, V.S., Carlsson, G.E.: Persistent topology and metastable state in conformational dynamics. PLoS One 8(4), e58699 (2013)

    Article  Google Scholar 

  33. Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in riemannian manifolds. J. ACM 60(6), 41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chazal, F., Fasy, B., Lecci, F., Michel, B., Rinaldo, A., Rinaldo, A., Wasserman, L.: Robust topological inference: distance to a measure and kernel distance. J. Mach. Learn. Res. 18(1), 5845–5884 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Chevyrev, I., Nanda, V., Oberhauser, H.: Persistence paths and signature features in topological data analysis. IEEE Trans. Pattern Anal. Mach. Intell. (2018)

    Google Scholar 

  36. Chikuse, Y.: Statistics on Special Manifolds, vol. 174. Springer, New York (2012)

    MATH  Google Scholar 

  37. Chung, Y.M., Lawson, A.: Persistence curves: a canonical framework for summarizing persistence diagrams (2019). Preprint. arXiv:1904.07768

    Google Scholar 

  38. Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data. In: International Conference on Information Processing in Medical Imaging, pp. 386–397. Springer, Berlin (2009)

    Google Scholar 

  39. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret. Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. da Silva, N.P., Costeira, J.P.: The normalized subspace inclusion: robust clustering of motion subspaces. In: IEEE International Conference on Computer Vision (ICCV), pp. 1444–1450. IEEE, Piscataway (2009)

    Google Scholar 

  41. De Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Algebr. Geom. Topol. 7(1), 339–358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. De Silva, V., Ghrist, R.: Homological sensor networks. Not. Am. Math. Soc. 54(1), 10–17 (2007)

    MathSciNet  MATH  Google Scholar 

  43. de Silva, V., Skraba, P., Vejdemo-Johansson, M.: Topological analysis of recurrent systems. In: Workshop on Algebraic Topology and Machine Learning, NIPS (2012)

    Google Scholar 

  44. Dey, T.K., Mandal, S.: Protein classification with improved topological data analysis. In: 18th International Workshop on Algorithms in Bioinformatics (WABI 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  45. Dey, T.K., Mandal, S., Varcho, W.: Improved image classification using topological persistence. In: Hullin, M., Klein, R., Schultz, T., Yao, A. (eds.) Vision, Modeling & Visualization. The Eurographics Association (2017)

    Google Scholar 

  46. Draper, B., Kirby, M., Marks, J., Marrinan, T., Peterson, C.: A flag representation for finite collections of subspaces of mixed dimensions. Linear Algebra Appl. 451, 15–32 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Edelsbrunner, H.: A Short Course in Computational Geometry and Topology. Mathematical methods. Springer, Berlin (2014)

    Google Scholar 

  49. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  50. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret. Comput. Geom. 28(4), 511–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Emrani, S., Gentimis, T., Krim, H.: Persistent homology of delay embeddings and its application to wheeze detection. IEEE Signal Process Lett. 21(4), 459–463 (2014)

    Article  Google Scholar 

  52. Fasy, B.T., Kim, J., Lecci, F., Maria, C.: Introduction to the R package TDA (2014). Preprint. arXiv:1411.1830

    Google Scholar 

  53. Freedman, D., Chen, C.: Algebraic topology for computer vision. Comput. Vis. 239–268 (2009)

    Google Scholar 

  54. Frosini, P., Landi, C.: Persistent betti numbers for a noise tolerant shape-based approach to image retrieval. Pattern Recogn. Lett. 34(8), 863–872 (2013)

    Article  Google Scholar 

  55. Gabella, M., Afambo, N., Ebli, S., Spreemann, G.: Topology of learning in artificial neural networks (2019). Preprint. arXiv: 1902.08160

    Google Scholar 

  56. Gabrielsson, R.B., Carlsson, G.: Exposition and interpretation of the topology of neural networks (2018). Preprint. arXiv: 1810.03234

    Google Scholar 

  57. Gamble, J., Chintakunta, H., Krim, H.: Applied topology in static and dynamic sensor networks. In: 2012 International Conference on Signal Processing and Communications (SPCOM), pp. 1–5. IEEE, Piscataway (2012)

    Google Scholar 

  58. Garland, J., Bradley, E., Meiss, J.D.: Exploring the topology of dynamical reconstructions. Phys. D Nonlinear Phenomena 334, 49–59 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  59. Gholizadeh, S., Zadrozny, W.: A short survey of topological data analysis in time series and systems analysis (2018). Preprint. arXiv: 1809.10745

    Google Scholar 

  60. Gholizadeh, S., Seyeditabari, A., Zadrozny, W.: Topological signature of 19th century novelists: persistent homology in text mining. Big Data Cogn. Comput. 2(4), 33 (2018)

    Article  Google Scholar 

  61. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Giansiracusa, N., Giansiracusa, R., Moon, C.: Persistent homology machine learning for fingerprint classification (2017). Preprint. arXiv: 1711.09158

    Google Scholar 

  63. Gidea, M.: Topological data analysis of critical transitions in financial networks. In: International Conference and School on Network Science, pp. 47–59. Springer, Berlin (2017)

    Google Scholar 

  64. Gidea, M., Katz, Y.: Topological data analysis of financial time series: landscapes of crashes. Phys. A Stat. Mech. Appl. 491, 820–834 (2018)

    Article  MathSciNet  Google Scholar 

  65. Guan, H., Tang, W., Krim, H., Keiser, J., Rindos, A., Sazdanovic, R.: A topological collapse for document summarization. In: 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5. IEEE, Piscataway (2016)

    Google Scholar 

  66. Guo, W., Manohar, K., Brunton, S.L., Banerjee, A.G.: Sparse-tda: sparse realization of topological data analysis for multi-way classification. IEEE Transactions on Knowledge and Data Engineering 30(7), 1403–1408 (2018)

    Article  Google Scholar 

  67. Han, Y.S., Yoo, J., Ye, J.C.: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis (2016). Preprint. arXiv: 1611.06391

    Google Scholar 

  68. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  69. Heath, T.L., et al.: The Thirteen Books of Euclid’s Elements. Courier Corporation, North Chelmsford (1956)

    MATH  Google Scholar 

  70. Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with topological signatures (2017). Preprint. arXiv: 1707.04041

    Google Scholar 

  71. Iijima, T.: Basic theory on the normalization of pattern (in case of typical one-dimensional pattern). Bull. Electro. Tech. Lab. 26, 368–388 (1962)

    Google Scholar 

  72. Ji-guang, S.: Perturbation of angles between linear subspaces. Int. J. Comput. Math. 58–61 (1987)

    Google Scholar 

  73. Kališnik, S.: Tropical coordinates on the space of persistence barcodes. Found. Comput. Math. 19(1), 101–129 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  74. Kasson, P.M., Zomorodian, A., Park, S., Singhal, N., Guibas, L.J., Pande, V.S.: Persistent voids: a new structural metric for membrane fusion. Bioinformatics 23(14), 1753–1759 (2007)

    Article  Google Scholar 

  75. Kokkinos, I., Bronstein, M., Yuille, A.: Dense scale invariant descriptors for images and surfaces. Ph.D. Thesis, INRIA (2012)

    Google Scholar 

  76. Kusano, G., Hiraoka, Y., Fukumizu, K.: Persistence weighted gaussian kernel for topological data analysis. In: International Conference on Machine Learning (ICML), pp. 2004–2013 (2016)

    Google Scholar 

  77. Kwitt, R., Huber, S., Niethammer, M., Lin, W., Bauer, U.: Statistical topological data analysis – a kernel perspective. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 3070–3078. Curran Associates, Inc., Red Hook (2015). http://papers.nips.cc/paper/5887-statistical-topological-data-analysis-a-kernel-perspective.pdf

    Google Scholar 

  78. Lakatos, I.: Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University Press, Cambridge (1976)

    Book  MATH  Google Scholar 

  79. Lawson, P., Sholl, A.B., Brown, J.Q., Fasy, B.T., Wenk, C.: Persistent homology for the quantitative evaluation of architectural features in prostate cancer histology. Sci. Rep. 9, 1–15 (2019)

    Article  Google Scholar 

  80. Lawson, P., Schupbach, J., Fasy, B.T., Sheppard, J.W.: Persistent homology for the automatic classification of prostate cancer aggressiveness in histopathology images. In: Medical Imaging 2019: Digital Pathology, vol. 10956, p. 109560G. International Society for Optics and Photonics, Bellingham (2019)

    Google Scholar 

  81. Le, T., Yamada, M.: Persistence fisher kernel: a riemannian manifold kernel for persistence diagrams. In: Advances in Neural Information Processing Systems, pp. 10007–10018 (2018)

    Google Scholar 

  82. Li, C., Shi, Z., Liu, Y., Xu, B.: Grassmann manifold based shape matching and retrieval under partial occlusions. In: International Symposium on Optoelectronic Technology and Application: Image Processing and Pattern Recognition (2014)

    Google Scholar 

  83. Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1995–2002 (2014)

    Google Scholar 

  84. Lian, Z., Godil, A., Fabry, T., Furuya, T., Hermans, J., Ohbuchi, R., Shu, C., Smeets, D., Suetens, P., Vandermeulen, D., et al.: Shrec’10 track: non-rigid 3d shape retrieval. Eurographics Workshop on 3D Object Retrieval (3DOR) 10, 101–108 (2010)

    Google Scholar 

  85. Liu, X., Srivastava, A., Gallivan, K.: Optimal linear representations of images for object recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2003)

    Google Scholar 

  86. Liu, X., Xie, Z., Yi, D., et al.: A fast algorithm for constructing topological structure in large data. Homology Homotopy Appl. 14(1), 221–238 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  87. Luo, D., Huang, H.: Video motion segmentation using new adaptive manifold denoising model. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  88. Makarenko, N., Kalimoldayev, M., Pak, I., Yessenaliyeva, A.: Texture recognition by the methods of topological data analysis. Open Eng. 6(1) (2016)

    Google Scholar 

  89. Marchese, A., Maroulas, V.: Signal classification with a point process distance on the space of persistence diagrams. Adv. Data Anal. Classif. 12(3), 657–682 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  90. Maria, C., Boissonnat, J.D., Glisse, M., Yvinec, M.: The gudhi library: Simplicial complexes and persistent homology. In: International Congress on Mathematical Software, pp. 167–174. Springer, Berlin (2014)

    Google Scholar 

  91. Maroulas, V., Nasrin, F., Oballe, C.: Bayesian inference for persistent homology (2019). Preprint. arXiv: 1901.02034

    Google Scholar 

  92. Mileyko, Y., Mukherjee, S., Harer, J.: Probability measures on the space of persistence diagrams. Inverse Prob. 27(12), 124007 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  93. Munch, E.: A user’s guide to topological data analysis. J. Learn. Anal. 4(2), 47–61 (2017)

    Article  Google Scholar 

  94. Nanda, V.: Perseus: the persistent homology software. Software available at http://www.sas.upenn.edu/~vnanda/perseus (2012)

  95. Nguyen, D.D., Xiao, T., Wang, M., Wei, G.W.: Rigidity strengthening: a mechanism for protein–ligand binding. J. Chem. Inf. Model. 57(7), 1715–1721 (2017)

    Article  Google Scholar 

  96. Niyogi, P., Smale, S., Weinberger, S.: A topological view of unsupervised learning from noisy data. SIAM J. Comput. 40(3), 646–663 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  97. Obayashi, I., Hiraoka, Y., Kimura, M.: Persistence diagrams with linear machine learning models. J. Appl. Comput. Topol. 1(3–4), 421–449 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  98. Pachauri, D., Hinrichs, C., Chung, M.K., Johnson, S.C., Singh, V.: Topology-based kernels with application to inference problems in alzheimer’s disease. IEEE Trans. Med. Imaging 30(10), 1760–1770 (2011)

    Article  Google Scholar 

  99. Padellini, T., Brutti, P.: Supervised learning with indefinite topological kernels (2017). Preprint. arXiv: 1709.07100

    Google Scholar 

  100. Perea, J.A.: Persistent homology of toroidal sliding window embeddings. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6435–6439. IEEE, Piscataway (2016)

    Google Scholar 

  101. Perea, J.A., Harer, J.: Sliding windows and persistence: an application of topological methods to signal analysis. Found. Comput. Math. 15(3), 799–838 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  102. Pereira, C.M., de Mello, R.F.: Persistent homology for time series and spatial data clustering. Expert Syst. Appl. 42(15–16), 6026–6038 (2015)

    Article  Google Scholar 

  103. Pun, C.S., Xia, K., Lee, S.X.: Persistent-homology-based machine learning and its applications–a survey (2018). Preprint. arXiv: 1811.00252

    Google Scholar 

  104. Qaiser, T., Tsang, Y.W., Taniyama, D., Sakamoto, N., Nakane, K., Epstein, D., Rajpoot, N.: Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features. Med. Image Anal. 55, 1–14 (2019)

    Article  Google Scholar 

  105. Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter and its application to texture mixing. In: International Conference on Scale Space and Variational Methods in Computer Vision, pp. 435–446. Springer, Berlin (2011)

    Google Scholar 

  106. Rahmani, H., Mian, A., Shah, M.: Learning a deep model for human action recognition from novel viewpoints. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 667–681 (2017)

    Article  Google Scholar 

  107. Ramamurthy, K.N., Varshney, K.R., Mody, K.: Topological data analysis of decision boundaries with application to model selection (2018). Preprint. arXiv: 1805.09949

    Google Scholar 

  108. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  109. Rieck, B., Mara, H., Leitte, H.: Multivariate data analysis using persistence-based filtering and topological signatures. IEEE Trans. Vis. Comput. Graph. 18(12), 2382–2391 (2012)

    Article  Google Scholar 

  110. Rieck, B., Togninalli, M., Bock, C., Moor, M., Horn, M., Gumbsch, T., Borgwardt, K.: Neural persistence: a complexity measure for deep neural networks using algebraic topology (2018). Preprint. arXiv: 1812.09764

    Google Scholar 

  111. Robins, V., Turner, K.: Principal component analysis of persistent homology rank functions with case studies of spatial point patterns, sphere packing and colloids. Phys. D Nonlinear Phenomena 334, 99–117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  112. Rucco, M., Castiglione, F., Merelli, E., Pettini, M.: Characterisation of the idiotypic immune network through persistent entropy. In: Proceedings of ECCS 2014, pp. 117–128. Springer, Berlin (2016)

    Google Scholar 

  113. Sanderson, N., Shugerman, E., Molnar, S., Meiss, J.D., Bradley, E.: Computational topology techniques for characterizing time-series data. In: International Symposium on Intelligent Data Analysis, pp. 284–296. Springer, Berlin (2017)

    Google Scholar 

  114. Saul, N., Tralie, C.: Scikit-TDA: Topological data analysis for python (2019). https://doi.org/10.5281/zenodo.2533369

  115. Seversky, L.M., Davis, S., Berger, M.: On time-series topological data analysis: New data and opportunities. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 59–67 (2016)

    Google Scholar 

  116. Sharafuddin, E., Jiang, N., Jin, Y., Zhang, Z.L.: Know your enemy, know yourself: Block-level network behavior profiling and tracking. In: IEEE Global Telecommunications Conference (GLOBECOM 2010), pp. 1–6 (2010)

    Google Scholar 

  117. Som, A., Krishnamurthi, N., Venkataraman, V., Turaga, P.: Attractor-shape descriptors for balance impairment assessment in parkinson’s disease. In: IEEE Conference on Engineering in Medicine and Biology Society (EMBC), pp. 3096–3100 (2016)

    Google Scholar 

  118. Som, A., Krishnamurthi, N., Venkataraman, V., Ramamurthy, K.N., Turaga, P.: Multiscale evolution of attractor-shape descriptors for assessing parkinson’s disease severity. In: IEEE Global Conference on Signal and Information Processing (GlobalSIP) (2017)

    Google Scholar 

  119. Som, A., Thopalli, K., Natesan Ramamurthy, K., Venkataraman, V., Shukla, A., Turaga, P.: Perturbation robust representations of topological persistence diagrams. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 617–635 (2018)

    Google Scholar 

  120. Som, A., Choi, H., Ramamurthy, K.N., Buman, M., Turaga, P.: PI-net: a deep learning approach to extract topological persistence images (2019). Preprint. arXiv: 1906.01769

    Google Scholar 

  121. Sun, X., Wang, L., Feng, J.: Further results on the subspace distance. Pattern Recogn. 40(1), 328–329 (2007)

    Article  MATH  Google Scholar 

  122. Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer, Berlin (1981)

    Google Scholar 

  123. Turner, K., Mileyko, Y., Mukherjee, S., Harer, J.: Fréchet means for distributions of persistence diagrams. Discret. Comput. Geom. 52(1), 44–70 (2014)

    Article  MATH  Google Scholar 

  124. Umeda, Y.: Time series classification via topological data analysis. Inf. Media Technol. 12, 228–239 (2017)

    Google Scholar 

  125. Venkataraman, V., Turaga, P.: Shape distributions of nonlinear dynamical systems for video-based inference. IEEE Trans. Pattern Anal. Mach. Intell. 38(12), 2531–2543 (2016)

    Article  Google Scholar 

  126. Venkataraman, V., Ramamurthy, K.N., Turaga, P.: Persistent homology of attractors for action recognition. In: IEEE International Conference on Image Processing (ICIP), pp. 4150–4154. IEEE, Piscataway (2016)

    Google Scholar 

  127. Wang, L., Wang, X., Feng, J.: Subspace distance analysis with application to adaptive bayesian algorithm for face recognition. Pattern Recogn. 39(3), 456–464 (2006)

    Article  MATH  Google Scholar 

  128. Wang, B., Summa, B., Pascucci, V., Vejdemo-Johansson, M.: Branching and circular features in high dimensional data. IEEE Trans. Vis. Comput. Graph. 17(12), 1902–1911 (2011)

    Article  Google Scholar 

  129. Wang, Y., Ombao, H., Chung, M.K., et al.: Persistence landscape of functional signal and its application to epileptic electroencaphalogram data. ENAR Distinguished Student Paper Award (2014)

    Google Scholar 

  130. Wasserman, L.: Topological data analysis. Annual Rev. Stat. Appl. 5, 501–532 (2018)

    Article  MathSciNet  Google Scholar 

  131. Wilkerson, A.C., Moore, T.J., Swami, A., Krim, H.: Simplifying the homology of networks via strong collapses. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 5258–5262. IEEE, Piscataway (2013)

    Google Scholar 

  132. Wong, Y.C.: Differential geometry of grassmann manifolds. Proc. Natl. Acad. Sci. 57(3), 589–594 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  133. Wu, C., Ren, S., Wu, J., Xia, K.: Weighted (co) homology and weighted laplacian (2018). Preprint. arXiv: 1804.06990

    Google Scholar 

  134. Xia, K.: A quantitative structure comparison with persistent similarity (2017). Preprint. arXiv: 1707.03572

    Google Scholar 

  135. Yan, J., Pollefeys, M.: A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: European Conference on Computer Vision (ECCV), pp. 94–106. Springer, Berlin (2006)

    Google Scholar 

  136. Ye, K., Lim, L.H.: Schubert varieties and distances between subspaces of different dimensions. SIAM J. Matrix Anal. Appl. 37(3), 1176–1197 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  137. Zeppelzauer, M., Zieliński, B., Juda, M., Seidl, M.: Topological descriptors for 3d surface analysis. In: International Workshop on Computational Topology in Image Context, pp. 77–87. Springer, Berlin (2016)

    Google Scholar 

  138. Zhang, Z., Song, Y., Cui, H., Wu, J., Schwartz, F., Qi, H.: Early mastitis diagnosis through topological analysis of biosignals from low-voltage alternate current electrokinetics. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 542–545. IEEE, Piscataway (2015)

    Google Scholar 

  139. Zhou, Z., Huang, Y., Wang, L., Tan, T.: Exploring generalized shape analysis by topological representations. Pattern Recogn. Lett. 87, 177–185 (2017)

    Article  Google Scholar 

  140. Zhu, X.: Persistent homology: an introduction and a new text representation for natural language processing. In: International Joint Conference on Artificial Intelligence (2013)

    Google Scholar 

  141. Zhu, X., Vartanian, A., Bansal, M., Nguyen, D., Brandl, L.: Stochastic multiresolution persistent homology kernel. In: International Joint Conference on Artificial Intelligence, pp. 2449–2457 (2016)

    Google Scholar 

  142. Zielinski, B., Juda, M., Zeppelzauer, M.: Persistence codebooks for topological data analysis (2018). Preprint. arXiv: 1802.04852

    Google Scholar 

  143. Zomorodian, A.: Fast construction of the vietoris-rips complex. Comput. Graph. 34(3), 263–271 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF CAREER grant 1452163 and ARO grant number W911NF-17-1-0293 during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudh Som .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Som, A., Ramamurthy, K.N., Turaga, P. (2020). Geometric Metrics for Topological Representations. In: Grohs, P., Holler, M., Weinmann, A. (eds) Handbook of Variational Methods for Nonlinear Geometric Data. Springer, Cham. https://doi.org/10.1007/978-3-030-31351-7_15

Download citation

Publish with us

Policies and ethics