Skip to main content

A Conceptual Framework for Developing a Customized I 4.0 Education Scale: An Exploratory Research

  • Conference paper
  • First Online:
Proceedings of the International Symposium for Production Research 2019 (ISPR 2019, ISPR 2019)

Abstract

The fourth industrial revolution proposes digitization and networking by providing more productive, intelligent, controllable, and transparent factory environment. Although organizations have increasing attention to such a paradigm, changes in production and automation technologies led organizations to consider various areas. The necessity of individual qualifications and skills will eventually require more qualified managers. Furthermore, in a high technological environment which requires expertise on new materials, machines and information need more skilled labour. The increased complexity of workspaces eventually resulted in a need for a high level of education for the employees. The presented study contributes to research by providing a framework to structure an education scale in the context of Industry 4.0. Preliminary work for an I 4.0 education scale through an extensive literature review and academic reviews were provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grzelczak, A., Kosacka, M., Werner-Lewandowska, K.: Employees competences for Industry 4.0 in Poland–preliminary research results. DEStech Transactions on Engineering and Technology Research, (icpr) (2017)

    Google Scholar 

  2. Aulbur, W., Bigghe, R.: Skill development for Industry 4.0: BRICS skill development working group. Roland Berger GMBH (2016)

    Google Scholar 

  3. Gebhardt, J., Grimm, A., Neugebauer, L.M.: Developments 4.0 prospects on future requirements and impacts on work and vocational education. J. Techn. Educ. 3(2), 117–133 (2015)

    Google Scholar 

  4. Hecklau, F., Galeitzke, M., Flachs, S., Kohl, H.: Holistic approach for human resource management in Industry 4.0. Procedia Cirp 54, 1–6 (2016)

    Article  Google Scholar 

  5. Pinzone, M., Fantini, P., Perini, S., Garavaglia, S., Taisch, M., Miragliotta, G.: Jobs and skills in Industry 4.0: an exploratory research. In: IFIP International Conference on Advances in Production Management Systems, pp. 282–288. Springer, Cham, September 2017

    Google Scholar 

  6. Prifti, L., Knigge, M., Kienegger, H., Krcmar, H.: A Competency Model for “Industrie 4.0”. Employees (2017)

    Google Scholar 

  7. Fitsilis, P., Tsoutsa, P., Gerogiannis, V.: Industry 4.0: required personnel competences. Industrey 4.0 3(3), 130–133 (2018)

    Google Scholar 

  8. Gittler, T., Relea, E., Corti, D., Corani, G., Weiss, L., Cannizzaro, D., Wegener, K.: Towards predictive quality management in assembly systems with low quality low quantity data - a methodological approach. Procedia CIRP 79, 125–130 (2019)

    Article  Google Scholar 

  9. http://sapevents.be/AnalyticsBriefings/presentations/SAP_PQM.pdf

  10. Mannino, S., Scampicchio, M.: Nanatechnology and food quality control. Vet. Res. Commun. 31(1), 149–151 (2007)

    Article  Google Scholar 

  11. Kuswandi, B., Futra, D., Heng, L.Y.: Nanosensors for the Detection of Food Contaminants, In: A. Grumezescu, A. Oprea (eds.) Nanotechnology Applications in Food. Academic Press (2017)

    Google Scholar 

  12. Manić, M., Miltenović, V., Stojković, M., Banić, M.: Feature models in virtual product development. Strojniski Vestnik/J. Mech. Eng. 56(3) (2010)

    Google Scholar 

  13. Ale Ebrahim, N., Ahmed, S., Taha, Z.: Modified stage-gate: A conceptual model of virtual product development process. Afr. J. Mark. Manag. 1(9), 211–219 (2009)

    Google Scholar 

  14. Berg, L.P., Vance, J.M.: Industry use of virtual reality in product design and manufacturing: a survey. Virtual Reality 21(1), 1–17 (2017)

    Article  Google Scholar 

  15. da Silva, G.C., Kaminski, P.C.: Selection of virtual and physical prototypes in the product development process. Int. J. Adv. Manuf. Technol. 84(5–8), 1513–1530 (2016)

    Google Scholar 

  16. Lemu, H.G.: Study of capabilities and limitations of 3D printing technology. In: AIP Conference Proceedings, vol. 1431, No. 1, pp. 857–865. AIP, April 2012

    Google Scholar 

  17. Dimitrov, D., Van Wijck, W., Schreve, K., De Beer, N.: Investigating the achievable accuracy of three dimensional printing. Rapid Prototyping Journal 12(1), 42–52 (2006)

    Article  Google Scholar 

  18. Zhong, R.Y., Xu, X., Klotz, E., Newman, S.T.: Intelligent manufacturing in the context of industry 4.0: a review. Engineering 3(5), 616–630 (2017)

    Article  Google Scholar 

  19. Li, X., Lu, R., Liang, X., Shen, X., Chen, J., Lin, X.: Smart community: an Internet of Things application. IEEE Commun. Mag. 49(11), 68–75 (2011)

    Article  Google Scholar 

  20. Doil, F., Schreiber, W., Alt, T., Patron, C.: Augmented reality for manufacturing planning. In: Proceedings of the Workshop on Virtual Environments 2003, pp. 71–76. ACM, May 2003

    Google Scholar 

  21. Nee, A.Y.C., Ong, S.K., Chryssolouris, G., Mourtzis, D.: Augmented reality applications in design and manufacturing. CIRP Ann. 61(2), 657–679 (2012)

    Article  Google Scholar 

  22. Mourtzis, D., Vlachou, E., Zogopoulos, V., Fotini, X.: Integrated production and maintenance scheduling through machine monitoring and augmented reality: an industry 4.0 approach. In: IFIP Advances in Information and Communication Technology, pp. 354–362 (2017). https://doi.org/10.1007/978-3-319-66923-6_42

  23. Mendoza, M., Mendoza, M., Mendoza, E., González, E.: Augmented reality as a tool of training for data collection on torque auditing. Procedia Comput. Sci. 75, 5–11 (2015)

    Article  Google Scholar 

  24. Hakkarainen, M., Woodward, C., Billinghurst, M.: Augmented assembly using a mobile phone. In: 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (2008)

    Google Scholar 

  25. Wirz, R., Marin, R. (n.d.). Remote programming of an Internet tele-lab for learning visual servoing techniques: a case study. In: 2004 IEEE International Conference on Systems, Man and Cybernetics

    Google Scholar 

  26. Marin, R., Sanz, P.J., Nebot, P., Wirz, R.: A multimodal interface to control a robot arm via the web: a case study on remote programming. IEEE Trans. Industr. Electron. 52(6), 1506–1520 (2005)

    Article  Google Scholar 

  27. Shrouf, F., Ordieres, J., Miragliotta, G.: Smart factories in industry 4.0: a review of the concept and of energy management approached in production based on the Internet of Things paradigm. In: 2014 IEEE International Conference on Industrial Engineering and Engineering Management (2014)

    Google Scholar 

  28. Primiceri, P., Visconti, P.: Solar-powered LED-based lighting facilities: an overview on recent technologies and embedded IoT devices to obtain wireless control, energy savings and quick maintenance. J. Eng. Appl. Sci. ARPN 12(1), 140–150 (2017)

    Google Scholar 

  29. Fleischmann, H., Kohl, J., Franke, J., Reidt, A., Duchon, M., Krcmar, H.: Improving maintenance processes with distributed monitoring systems. In: 2016 IEEE 14th International Conference on Industrial Informatics (INDIN) (2016)

    Google Scholar 

  30. Yamato, Y., Fukumoto, Y., Kumazaki, H.: Predictive maintenance platform with sound stream analysis in edges. J. Inf. Process. 25, 317–320 (2017)

    Google Scholar 

  31. Yano, K., Akitomi, T., Ara, K., Watanabe, J., Tsuji, S., Sato, N., Moriwaki, N.: Profiting from IoT: The key is very-large-scale happiness integration. In: 2015 Symposium on VLSI Circuits (VLSI Circuits) (2015)

    Google Scholar 

  32. Zangl, G., Oberwinkler, C.P.: Predictive data mining techniques for production optimization. In: Proceedings of SPE Annual Technical Conference and Exhibition (2004)

    Google Scholar 

  33. Bastos, P., Lopes, I., Pires, L.C.M.: Application of data mining in a maintenance system for failure prediction. In: Safety, Reliability and Risk Analysis: Beyond the Horizon: 22nd European Safety and Reliability, vol. 1, pp. 933–940 (2014)

    Google Scholar 

  34. Cheng, C.-W., Yao, H.-Q., Wu, T.-C.: Applying data mining techniques to analyze the causes of major occupational accidents in the petrochemical industry. J. Loss Prev. Process Ind. 26(6), 1269–1278 (2013)

    Article  Google Scholar 

  35. Eaton, C., Deroos, D., Deutsch, T., Lapis, G., Zikopoulos, P.C.: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. Mc Graw-Hill Companies (2012). 978-0-07-179053-6

    Google Scholar 

  36. Sagiroglu, S., Sinanc, D.: Big data: a review. In: 2013 International Conference on Collaboration Technologies and Systems (CTS), pp. 42–47. IEEE, May 2013

    Google Scholar 

  37. Gantz, J., Reinsel, D.: Extracting value from chaos. IDC iView, pp. 1–12 (2011)

    Google Scholar 

  38. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  39. Chen, M., Mao, S., Liu, Y.: Big data: A survey. Mobile networks and applications 19(2), 171–209 (2014)

    Article  Google Scholar 

  40. Bakshi, K.: Considerations for Big Data: Architecture and Approach. In: Aerospace Conference IEEE, Big Sky Montana, March 2012

    Google Scholar 

  41. Negash, S.: Business intelligence. Commun. Assoc. Inf. Syst. 13, 177–195 (2004)

    Google Scholar 

  42. Rohloff, R.: Health-care BI: a tool for meaningful analysis. Healthc. Financ. Manag. 65(5), 100–108 (2011)

    Google Scholar 

  43. Foshay, N., Kuziemsky, C.: Towards an implementation framework for business intelligence in healthcare. Int. J. Inf. Manage. 34(1), 20–27 (2014)

    Article  Google Scholar 

  44. Mettler, T., Vimarlund, V.: Understanding business intelligence in the context of healthcare. Health Inf. J. 15(3), 254–264 (2009)

    Article  Google Scholar 

  45. Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: From big data to big impact. MIS Q. 36(4) (2012)

    Google Scholar 

  46. Kalogirou, S.A.: Artificial intelligence for the modeling and control of combustion processes: a review. Prog. Energy Combust. Sci. 29, 515–566 (2003)

    Article  Google Scholar 

  47. Mellit, A., Kalogirou, S.A., Hontoria, L., Shaari, S.: Artificial intelligence techniques for sizing photovoltaic systems: a review. Renew. Sustain. Energy Rev. 13(2), 406–419 (2009)

    Article  Google Scholar 

  48. Helu, M., Hedberg Jr., T.: Enabling smart manufacturing research and development using a product lifecycle test bed. Procedia Manuf 1, 86–97 (2015)

    Article  Google Scholar 

  49. Stopp, S., Wolff, T., Irlinger, F., Lueth, T.: A new method for printer calibration and contour accuracy manufacturing with 3D-print technology. Rapid Prototyping J. 14(3), 167–172 (2008)

    Article  Google Scholar 

  50. Dev-Anand, M., Selveraj, T., Kumanan, S., Ajith-Bosco-Raj, T.: Robotics in online inspection and quality control using moment algorithm. Adv. Prod. Eng. Manag. 7, 27–38 (2012)

    Google Scholar 

  51. Mellit, A., Kalogirou, S.A.: Artificial intelligence techniques for photovoltaic applications: A review. Prog. Energy Combust. Sci. 34(5), 574–632 (2008)

    Article  Google Scholar 

  52. Kusiak, A.Y., Sunderesh, D., Heragu, S.: Expert systems and optimization. IEEE Trans. Software Eng. 15(8), 1017–1020 (1989)

    Article  Google Scholar 

  53. Kodi, A.K., Louri, A.: Energy-efficient and bandwidth reconfigurable photonic networks for high-performance computing (hpc) systems. IEEE J. Sel. Top. Quantum Electron. 17(2), 384–395 (2011)

    Article  Google Scholar 

  54. Gerhardt, B., Griffin, K., Klemann, R.: Unlocking Value in the Fragmented World of Big Data Analytics. Cisco Internet Business Solutions Group, June 2012. http://www.cisco.com/web/about/ac79/docs/sp/InformationInfomediaries.pdf

  55. Russom, P.: Big data analytics. TDWI Best Pract. Report, Fourth Q. 19(4), 1–34 (2011)

    Google Scholar 

  56. Singh, S., Singh, N.: Big data analytics. In: 2012 International Conference on Communication, Information & Computing Technology Mumbai India. IEEE, October 2011

    Google Scholar 

  57. Shen, W.M., Hao, Q., Yoon, H.J., Norrie, D.H.: Applications of agent-based systems in intelligent manufacturing: an updated review. Adv. Eng. Inform. 20(4), 415–431 (2006)

    Article  Google Scholar 

  58. Zijm, W.H.M.: Towards intelligent manufacturing planning and control systems. OR-Spectrum 22(3), 313–345 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. Kanawaday, A., Sane, A.: Machine learning for predictive maintenance of industrial machines using IoT sensor data. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 87–90. IEEE, November 2017

    Google Scholar 

  60. Poon, T.C., Choy, K.L., Chow, H.K.H., Lau, H.C.W., Chan, F.T.S., Ho, K.C.: A RFID case-based logistics resource management system for managing order-picking operations in warehouses. Expert Syst. Appl. 36(4), 8277–8301 (2009)

    Article  Google Scholar 

  61. Huang, G.Q., Zhang, Y.F., Chen, X., Newman, S.T.: RFID-enabled real-time wireless manufacturing for adaptive assembly planning and control. J. Intell. Manuf. 19(6), 701–713 (2008)

    Article  Google Scholar 

  62. Zhang, Y.F., Jiang, P., Huang, G.: RFID-based smart Kanbans for Just-In-Time manufacturing. Int J Mater. Prod. Tech. 33(1–2), 170–184 (2008)

    Article  Google Scholar 

  63. Zhong, R.Y., Lan, S., Xu, C., Dai, Q., Huang, G.Q.: Visualization of RFID-enabled shopfloor logistics Big Data in Cloud Manufacturing. Int. J. Adv. Manuf. Tech. 84(1–4), 5–16 (2016)

    Article  Google Scholar 

  64. Qu, T., Lei, S.P., Wang, Z.Z., Nie, D.X., Chen, X., Huang, G.Q.: IoT-based real-time production logistics synchronization system under smart cloud manufacturing. Int. J. Adv. Manuf. Tech. 84(1–4), 147–164 (2016)

    Article  Google Scholar 

  65. Selcuk, S.: Predictive maintenance, its implementation and latest trends. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 231(9), 1670–1679 (2016)

    Article  Google Scholar 

  66. Sallam, R.L., Richardson, J., Hagerty, J., Hostmann, B.: Magic Quadrant for Business Intelligence Platforms. Gartner Group, Stamford (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunus Kaymaz .

Editor information

Editors and Affiliations

Appendix

Appendix

I 4.0 Level 2 Skill Gap Identification Form for Genetic Algorithms (GA) Sub-Dimension

 

Question

1 (not sufficient)

2

3

4

5 (sufficient)

1

Knowledge about general terminology about the GA

     

2

Ability to list the coding methods

     

3

To provide the solution procedure of GA

     

4

Knowledge about the crossover rate in genetic algorithm?

     

5

Knowledge about GA selection operator

     

6

Knowledge about mutation methods and procedures

     

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaymaz, Y., Kabasakal, İ., Çiçekli, U.G., Kocamaz, M. (2020). A Conceptual Framework for Developing a Customized I 4.0 Education Scale: An Exploratory Research. In: Durakbasa, N., Gençyılmaz, M. (eds) Proceedings of the International Symposium for Production Research 2019. ISPR ISPR 2019 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-31343-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31343-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31342-5

  • Online ISBN: 978-3-030-31343-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics