Skip to main content

Certain Fractional Integral and Differential Formulas Involving the Extended Incomplete Generalized Hypergeometric Functions

  • Chapter
  • First Online:

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 154))

Abstract

The fractional integral and differential operators involving the family of special functions have found significant importance and applications in various fields of mathematics and engineering. The goal of this chapter is to find the fractional integral and differential formulas (also known as composition formulas) involving the extended incomplete generalized hypergeometric functions by using the generalized fractional calculus operators (the Marichev–Saigo–Maeda operators). After that, we established their image formulas by using the integral transforms like: Beta transform, Laplace transform and Whittaker transform. Moreover, the reduction formulas are also considered as special cases of our main findings associated with the well-known Saigo fractional integral and differential operators, Erdélyi-Kober fractional integral and differential operators, Riemann-Liouville fractional integral and differential operators and the Weyl fractional calculus operators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.A.T. Machado, V. Kiryakova, F. Mainardi, A poster about the old history of fractional calculus. Fract. Calc. Appl. Anal. 13(4), 447–454 (2010)

    MathSciNet  MATH  Google Scholar 

  2. J.A.T. Machado, V. Kiryakova, F. Mainardi, A poster about the recent history of fractional calculus. Fract. Calc. Appl. Anal. 13(3), 329–334 (2010)

    MathSciNet  MATH  Google Scholar 

  3. J.A.T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011). https://doi.org/10.1016/j.cnsns.2010.05.027

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Caputo, F. Mainardi, Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II) 1, 161–198 (1971)

    Article  Google Scholar 

  5. Y.N. Rabotnov, Elements of Hereditary Solid Mechanics (MIR, Moscow, 1980)

    MATH  Google Scholar 

  6. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (Imperial College Press, London, 2010)

    Book  MATH  Google Scholar 

  7. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific Publishing Company, Singapore, 2000)

    Book  MATH  Google Scholar 

  8. R.B.L.S. Prakasa, Statistical Inference for Fractional Diffusion Processes (Wiley, Chichester, 2010)

    MATH  Google Scholar 

  9. A. Mathai, R. Saxena, H. Haubold, TheH-Functions: Theory and Applications (Springer, New York, NY, 2010)

    Book  MATH  Google Scholar 

  10. V.E. Tarasov, Fractional dynamics: application of fractional calculus to dynamics of particles, in Fields and Media (Springer, Heidelberg /Higher Education Press, Beijing, 2010)

    Book  MATH  Google Scholar 

  11. V.V. Uchaikin, Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory (Springer, Berlin/Higher Education Press, Beijing, 2013)

    Google Scholar 

  12. V.V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Vol. II. Applications (Springer, Berlin /Higher Education Press, Beijing, 2013)

    Google Scholar 

  13. G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, Oxford, 2005)

    MATH  Google Scholar 

  14. R. Caponetto, G. Dongola, L. Fortuna, I. Petráš, Fractional Order Systems: Modeling and Control Applications (World Scientific Publishing Co Inc., Singapore, 2010)

    Book  Google Scholar 

  15. M. Axtell, M.E. Bise, Fractional calculus applications in control systems, in Proceedings of the 1990 National Aerospace and Electronics Conference, Dayton, OH, 1990

    Google Scholar 

  16. A. Azar, S.Vaidyanathan, A. Ouannas, Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol. 688 (Springer, Heidelberg, 2017)

    Google Scholar 

  17. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus: Models and Numerical Methods (World Scientific, London, Singapore, Berlin, 2012)

    Book  MATH  Google Scholar 

  18. K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer Lecture Notes in Mathematics, vol. 2004 (Springer, Berlin, 2010)

    Google Scholar 

  19. V. Kiryakova, Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics Series (Longman Scientific & Technical, Harlow, Longman, 1994)

    Google Scholar 

  20. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204 (Elsevier (North-Holland) Science Publishers, Amsterdam, London, New York, 2006)

    Chapter  MATH  Google Scholar 

  21. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)

    MATH  Google Scholar 

  22. K. Oldham, J. Spanier, Fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitrary Order (Academic, New York, London, 1974)

    MATH  Google Scholar 

  23. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198 (Academic, New York, London, Sydney, Tokyo, Toronto, 1999)

    MATH  Google Scholar 

  24. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science Publishers, Yverdon, New York, London, 1993)

    MATH  Google Scholar 

  25. Y.A. Brychkov, Handbook of Special Functions, Derivatives, Integrals, Series and Other Formulas (CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2008)

    Book  MATH  Google Scholar 

  26. J. Choi, P. Agarwal, Certain integral transform and fractional integral formulas for the generalized Gauss hypergeometric functions. Abstr. Appl. Anal. 2014 (2014). https://doi.org/10.1155/2014/735946

    MathSciNet  MATH  Google Scholar 

  27. R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, in Fractals and Fractional Calculus in Continuum Mechanics, ed. by A. Carpinteri, F. Mainardi (Springer, Wien, 1997)

    MATH  Google Scholar 

  28. V. Kiryakova, A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 11(2), 203220 (2008)

    Google Scholar 

  29. A.A. Kilbas, Fractional calculus of the generalized Wright function. Fract. Calc. Appl. Anal. 8(2), 113–126 (2005)

    MathSciNet  MATH  Google Scholar 

  30. V. Kiryakova, Some special functions related to fractional calculus and fractional (non-integer) order control systems and equations, in Facta Universitatis(Sci. J. of University of Nis). Series: Automatic Control and Robotics, vol. 7(1) (2008), pp. 79–98

    Google Scholar 

  31. P. Agarwal, F. Qi, M. Chand, G. Singh, Some fractional differential equations involving generalized hypergeometric functions. J. Appl. Anal. 25(1), 37–44 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Singh, P. Agarwal, S. Araci, M. Ackigoz, Certain fractional calculus formulas involving extended generalized Mathieu series, in Advances in Difference Equations, vol. 2018 (2018). https://doi.org/10.1186/s13662-018-1596-9

  33. J. Choi, P. Agarwal, S. Mathur, S. Purohit, Certain new integral formulas involving the generalized Bessel functions. Bull. Korean Math. Soc. 51(4), 995–1003 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Agarwal, M. Chand, J. Choi, G. Singh, Certain fractional integrals and image formulas of generalized k-Bessel function. Commun. Korean Math. Soc. 33(2), 423–436 (2018)

    MathSciNet  MATH  Google Scholar 

  35. P. Agarwal, Q. Ai-Mdallal, Y. Cho, S. Jain, Fractional differential equations for the generalized Mittag-Leffler function. Adv. Differ. Equ. 2018(1) (2018), 58

    Article  MathSciNet  MATH  Google Scholar 

  36. I. KIyamz, A. Cetinkaya, P. Agarwal, An extension of Caputo fractional derivative operator and its applications. J. Nonlinear Sci. Appl. 9, 3611–3621 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. F.G. Tricomi, Sulla funzione gamma incompleta. Ann. Mat. Pura Appl. 31(4), 263–279 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  38. F.A. Musallam, S.L. Kalla, Asymptotic expansions for generalized gamma and incomplete gamma functions. Appl. Anal. 66, 173–187 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. F.A. Musallam, S.L. Kalla, Further results on a generalized gamma function occurring in diffraction theory. Integr. Transf. Spec. Funct. 7(3–4), 175–190 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Srivastava, Some properties of a family of incomplete hypergeometric functions. Russian J. Math. Phys. 20, 121–128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. R. Srivastava, Some generalizations of Pochhammer symbol and their associated families of hypergeometric functions and hypergeometric polynomials. Appl. Math. Inf. Sci. 7(6), 2195–2206 (2013)

    Article  MathSciNet  Google Scholar 

  42. R. Srivasrava, R. Agawal, S. Jain, A family of the incomplete hypergeometric functions and associated integral transform and fractional derivative formulas. Filomat 31(1), 125–140 (2017)

    Article  MathSciNet  Google Scholar 

  43. O.I. Marichev, Volterra equation of Mellin convolution type with a Horn function in the kernel. Izv. ANBSSR Ser. Fiz.-Mat. Nauk. 1, 128–129 (1974)

    Google Scholar 

  44. M. Saigo, N. Maeda, More generalization of fractional calculus, in Transform Methods and Special Functions (Bulgarian Academy of Sciences, Sofia, Varna, 1996)

    Google Scholar 

  45. R. Saxena, M. Saigo, Generalized fractional calculus of the H-function associated with the Appell function. J. Frac. Calc. 19, 89104 (2001)

    MathSciNet  MATH  Google Scholar 

  46. M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Kyushu Univ. 11(2), 135143 (1978)

    Google Scholar 

  47. M. Saigo, A certain boundary value problem for the Euler-Darboux equation I. Math. Japon. 24(4), 377385 (1979)

    Google Scholar 

  48. M. Saigo, A certain boundary value problem for the Euler-Darboux equation II. Math. Japon. 25(2), 211220 (1980)

    Google Scholar 

  49. H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series (Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, Toronto, 1985)

    Google Scholar 

  50. H. Kober, On fractional integrals and derivatives. Quart. J. Math. Oxford 11, 193212 (1940)

    MathSciNet  Google Scholar 

  51. V. Kiryakova, Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics Series (Longman Scientific and Technical, Harlow/Wiley, New York, NY, 1993)

    Google Scholar 

  52. H. Srivastava, R. Saxena, Operators of fractional integration and their applications. Appl. Math. Comput. 118, 1–52 (2001)

    MathSciNet  MATH  Google Scholar 

  53. L.C. Andrews, Special Functions for Engineers and Applied Mathematicians (Macmillan Company, New York, 1984)

    Google Scholar 

  54. F. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, Handbook of Mathematical Functions (US Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, London, New York, 2010)

    Google Scholar 

  55. M.A. Chaudhry, S.M. Zubair, On a Class of Incomplete Gamma Functions with Applications (Chapman and Hall (CRC Press), Boca Raton, London, New York, Washington, DC, 2001)

    Book  Google Scholar 

  56. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vol. II (McGraw-Hill Book Company, New York, Toronto, London, 1953)

    MATH  Google Scholar 

  57. Y.L. Luke, Mathematical Functions and Their Approximations (Academic, New York, San Francisco, London, 1975)

    MATH  Google Scholar 

  58. A.M. Mathai, R.K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences. Lecture Note Series, vol. 348 (Springer, New York, 1973)

    Book  MATH  Google Scholar 

  59. A.M. Mathai, H.J. Haubold, Special Functions for Applied Scientists (Springer, New York, 2008)

    Book  MATH  Google Scholar 

  60. N.M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics (Wiley, New York, Chichester, Brisbane, Toronto, 1996)

    Book  MATH  Google Scholar 

  61. J. Choi, P. Agarwal, Certain class of generating functions for the incomplete hypergeometric functions. Abstr. Appl. Anal. 2014, 5 pp. (2014). https://doi.org/10.1155/2014/714560

    MathSciNet  MATH  Google Scholar 

  62. H. Srivastava, P. Agarwal, Certain fractional integral operators and the generalized incomplete Hypergeometric functions. Appl. Appl. Math. 8(2), 333–345 (2013)

    MathSciNet  MATH  Google Scholar 

  63. H.M. Srivastava, M.A. Chaudhry, R.P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions. Integr. Transf. Spec. Funct. 23, 659–683 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. R. Srivastava, N.E. Cho, Generating functions for a certain class of incomplete hypergeometric polynomials. Appl. Math. Comput. 219, 3219–3225 (2012)

    MathSciNet  MATH  Google Scholar 

  65. H. Srivastava, A. Çetinkaya, I. Kymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions. Appl. Math. Comput. 226, 484–491 (2014) https://doi.org/10.1016/j.amc.2013.10.032

    MathSciNet  MATH  Google Scholar 

  66. R. Parmar, R. Raina, On the Extended Incomplete Pochhammer Symbols and Hypergeometric Functions (2017). arXiv:1701.04159v1[math.CA]

    Google Scholar 

  67. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vols. I–III (Krieger Pub., Melbourne, FL, 1981)

    Google Scholar 

  68. G. E. Andrews, R. Askey, R. Roy, Special Functions (Cambridge University Press, Cambridge, 1999)

    Book  MATH  Google Scholar 

  69. E.D. Rainville, Special Functions (The Macmillan Company, New York, 1960)

    MATH  Google Scholar 

  70. H.M. Srivastava, J. Choi, Zeta andq-Zeta Functions and Associated Series and Integrals (Elsevier Science Publishers, Amsterdam, London, New York, 2012)

    MATH  Google Scholar 

  71. M. Chaudhry, S.M. Zubair, Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 55, 99124 (1994)

    Article  MathSciNet  Google Scholar 

  72. I. Sneddon, The Use of Integral Transforms (Tata McGraw-Hill, New Delhi, 1979)

    MATH  Google Scholar 

  73. J.L. Schiff, The Laplace Transform, Theory and Applications ( Springer, New York, 1999)

    MATH  Google Scholar 

  74. G. Singh, P. Agarwal, M. Chand, S. Jain, Certain fractional kinetic equations involving generalized k-Bessel function. Trans. A. Razmadze Math. Inst. 172(3), 559–570 (2018). https://doi.org/10.1186/s13662-018-1596-9

    Article  MathSciNet  MATH  Google Scholar 

  75. P. Agarwal, M. Chand, G. Singh, Certain fractional kinetic equations involving the product of generalized k-Bessel function. Alex. Eng. J. 55(4), 3053–3059 (2016)

    Article  Google Scholar 

  76. P. Agarwal, S.K. Ntouyas, S. Jain, M. Chand, G. Singh, Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform. Alex. Eng. J. 57, 1937–1942 (2018)

    Article  Google Scholar 

  77. J. Choi, D. Kumar, Solutions of generalized fractional kinetic equations involving Aleph functions. Math. Commun. 20, 113–123 (2015)

    MathSciNet  MATH  Google Scholar 

  78. J. Choi, P. Agarwal, Certain unified integrals associated with Bessel functions. Bound. Value Probl. 95(1) (2013). https://doi.org/10.1186/1687-2770-2013-95

  79. V. Chaurasia, S. Pandey, On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions. Astrophys. Space Sci. 317, 213–219 (2008)

    Article  Google Scholar 

  80. M. Chand, J.C. Prajapati, E. Bonyah, Fractional integrals and solution of fractional kinetic equations involving k-Mittag-Leffler function. Trans. A. Razmadze Math. Inst. 171(2), 144–166 (2017). https://doi.org/101016/j.trmi.2017.03.003

    Article  MathSciNet  MATH  Google Scholar 

  81. A. Chouhan, S.D. Purohit, S. Saraswat, On solution of generalized kinetic equation of fractional order. Int. J. Math. Sci. Appl. 2, 813–818 (2012)

    Google Scholar 

  82. A. Chouhan, S.D. Purohit, S. Saraswat, An alternative method for solving generalized differential equations of fractional order. Kragujevac J. Math. 37(2), 299–306 (2013)

    MathSciNet  MATH  Google Scholar 

  83. V.G. Gupta, B. Sharma, On the solutions of generalized fractional kinetic equations. Appl. Math. Sci. 5(19), 899–910 (2011)

    MathSciNet  MATH  Google Scholar 

  84. A. Gupta, C.L. Parihar, On solutions of generalized kinetic equations of fractional order. Bol. Soc. Paran. Mat. 32(1), 181–189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  85. H. Haubold, A.M. Mathai, The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 327, 53–63 (2000)

    Article  MATH  Google Scholar 

  86. D. Kumar, S.D. Purohit, A. Secer, A. Atangana, On generalized fractional kinetic equations involving generalized Bessel function of the first kind. Math. Probl. Eng. 7 (2015). https://doi.org/10.1155/2015/289387

    Article  MathSciNet  MATH  Google Scholar 

  87. R. Saxena, A.M. Mathai, H.J. Haubold, On fractional kinetic equations. Astrophys. Space Sci. 282, 281–287 (2002)

    Article  Google Scholar 

  88. R. Saxena, A.M. Mathai, H.J. Haubold, On generalized fractional kinetic equations. Physica A 344, 657–664 (2004)

    Article  MathSciNet  Google Scholar 

  89. R. Saxena, A.M. Mathai, H.J. Haubold, Solution of generalized fractional reaction-diffusion equations. Astrophys. Space Sci. 305, 305–313 (2006)

    Article  MATH  Google Scholar 

  90. R.K. Saxena, S.L. Kalla, On the solutions of certain fractional kinetic equations. Appl. Math. Comput. 199, 504–511 (2008)

    MathSciNet  MATH  Google Scholar 

  91. G. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos. Physica D 76, 110–122 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  92. A. Saichev, M. Zaslavsky, Fractional kinetic equations: solutions and applications. Chaos 7, 753–764 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  93. V. Kourganoff, Introduction to the Physics of Stellar Interiors (D. Reidel Publishing Company, Dordrecht, 1973)

    Book  Google Scholar 

  94. M. Spiegel, Theory and Problems of Laplace Transforms. Schaums Outline Series (McGraw-Hill, New York, 1965)

    Google Scholar 

  95. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Tables of Integral Transforms, vol. 1 (McGraw-Hill, New York, Toronto, London, 1954)

    MATH  Google Scholar 

  96. G.M. Mittag-Leffler, Sur la representation analytiqie d’une fonction monogene cinquieme note. Acta Math. 29, 101–181 (1905)

    Article  MathSciNet  MATH  Google Scholar 

  97. P. Agarwal, Further results on fractional calculus of Saigo operators. Appl. Appl. Math. 7(2), 585–594 (2012)

    MathSciNet  MATH  Google Scholar 

  98. P. Agarwal, J. Choi, Fractional calculus operators and their images formulas. J. Korean Math. Soc. 53(5), 1183–1210 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  99. P. Agarwal, S. Jain, Further results on fractional calculus of Srivastava polynomials. Bull. Math. Anal. Appl. 3(2), 167–174 (2011)

    MathSciNet  MATH  Google Scholar 

  100. A. McBride, Fractional Calculus and Integral Transforms of Generalized Functions. Research Notes in Mathematics (Pitman Publishing Limited, London, 1979)

    Google Scholar 

  101. A. McBride, Fractional powers of a class of ordinary differential operators. Proc. Lond. Math. Soc. (III) 45, 519546 (1982)

    Google Scholar 

  102. M. Saigo, On generalized fractional calculus operators. Recent Advances in Applied Mathematics. Proc. Internat. Workshop held at Kuwait Univ., Kuwait (1996), pp. 441–450

    MATH  Google Scholar 

  103. R. Saxena, K. Nishimoto, Fractional calculus of generalized Mittag-Leffler functions. J. Fract. Calc. 37, 43–52 (2010)

    MathSciNet  MATH  Google Scholar 

  104. R. Saxena, J. Ram, M. Vishnoi, Fractional integration and fractional differentiation of generalized Mittag-Leffler functions. J. Indian Acad. Math. 32(1), 153–161 (2010)

    MathSciNet  MATH  Google Scholar 

  105. H. Srivastava, Ž. Tomovski, Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211(1), 198–210 (2009). https://doi.org/10.1016/j.amc.2009.01.055

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from SERB Project No. TAR/2018/000001 to the first author.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwal, P., Rassias, T.M., Singh, G., Jain, S. (2019). Certain Fractional Integral and Differential Formulas Involving the Extended Incomplete Generalized Hypergeometric Functions. In: Rassias, T., Pardalos, P. (eds) Mathematical Analysis and Applications. Springer Optimization and Its Applications, vol 154. Springer, Cham. https://doi.org/10.1007/978-3-030-31339-5_8

Download citation

Publish with us

Policies and ethics