Skip to main content

Security Evaluation of Sensor Networks

  • Chapter
  • First Online:
Recent Developments on Industrial Control Systems Resilience

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 255))

  • 716 Accesses

Abstract

Traditional industrial control systems (ICS) were implemented especially for isolated system and used specialized hardware and software control protocols. Along with development of low-cost Internet Protocol (IP) devices, the ICS adopting new information technologies (IT) solutions to promote systems connectivity and data communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stouffer, K., Falco, J., Scarfone, K.: Guide to Industrial Control Systems (ICS) Security, 2015, NIST Special Publication 800-82 (2015)

    Google Scholar 

  2. Peterson, D.: Intrusion Detection and Cyber Security Monitoring of SCADA and DCS Networks, ISA (2004)

    Google Scholar 

  3. Diaz, A., Sanchez, P.: Simulation of attacks for security in wireless sensor network. Sensors 16, 2–27 (2016)

    Google Scholar 

  4. Shukla, J., Babli Kumari, K.: Security threats and defense approaches in wireless sensor networks: an overview. IJAIEM 2, 165–175 (2013)

    Google Scholar 

  5. Jinghua, Z.: Wireless sensor network technology based on security trust evaluation model. iJOE 14(4), 211–226 (2018)

    Google Scholar 

  6. Singh, J.: Security issues in wireless sensor networks (wsn). Lect. Notes Eng. Comput. Sci. 2170(1), 40–45 (2015)

    Google Scholar 

  7. Marinescu, I., Botea, B., Andrei, H.: Critical infrastructure risk assessment of Romanian power systems. In: Proceedings of IEEE-ISEEE Conference (2017)

    Google Scholar 

  8. Esfahani, P.M., Vrakopuolou, M., Margellos, K., Lygeros, J., Andersson, G.: Cyber attack in a two-area power system: impact identification using reachability. In: Proceedings of American Control Conference (2010)

    Google Scholar 

  9. https://en.wikipedia.org/wiki/List_of_major_power_outages

  10. Final Report System Disturbance on 4 November 2006, UCTE. https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-Report-20070130.pdf

  11. “North American Electric Reliability Council, Technical Analysis of the August 14, 2003, Blackout: What Happened, Why, and What Did We Learn?”, North American Electric Reliability Council (2004)

    Google Scholar 

  12. Smith, R.: Assault on California power station raises alarm on potential for terrorism. Wall Street J. (2014)

    Google Scholar 

  13. Zetter, K.: Inside the cunning, unprecedented hack of Ukraine’s Power Grid (2016). https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/

  14. Medairy, B.: Lessons from Ukraine’s energy grid cyber-attack (2017). https://www.boozallen.com/s/insight/thought-leadership/lessons-from-ukranians-energy-grid-cyber-attack.html

  15. TLP: White Analysis of the Cyber Attack on the Ukrainian Power Grid (2016). https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf

  16. Greenberg, A.: Crash override: the malware that took down a power grid (2017). https://www.wired.com/story/crash-override-malware/

  17. Lee, R.M.: Crashoverride: Analyzing the Malware that Attacks Power Grids. https://dragos.com/resource/crashoverride-analyzing-the-malware-that-attacks-power-grids/

  18. Osborne, C.: Industroyer: An in-Depth look at the Culprit Behind Ukraine’s Power Grid Blackout (2018). https://www.zdnet.com/article/industroyer-an-in-depth-look-at-the-culprit-behind-ukraines-power-grid-blackout/

  19. Maduro, N.: Presents Details of Attacks Against Electrical System in Venezuela (2019). https://www.telesurenglish.net/news/Maduro-Presents-Details-of-Attacks-Against-Electrical-System-20190311-0019.html

  20. Teruggi, M.: New Sabotage and Power Outage in Venezuela March 25–26 (2019). https://www.workers.org/2019/03/29/new-sabotage-and-power-outage-in-venezuela-march-25-26/

  21. Andrei, A., Stănculescu, M.: Cryptography versus Cryptanalysis (in Romanian: Criptografie versus critpanaliza). Ed. Printech (2014)

    Google Scholar 

  22. Deaconu, I.D., Stănculescu, M., Chirilă, A. I., Năvrăpescu, V., Andrei, H.: On automatic transfer switch system security. In: Proceedings of IEEE-International Conference on Applied and Theoretical Electricity (ICATE) (2018)

    Google Scholar 

  23. De Moura, L., Bjorner, N.: Z3: An efficient SMT solver. In: Proceedings of International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08 (2008)

    Google Scholar 

  24. https://www.microsoft.com/en-us/research/people/nbjorner/

  25. https://uofi.app.box.com/s/o4c20a1y3onih9yq8woe/file/10768277893

  26. https://www.google.ro/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjbm6qClffgAhWB5KQKHZfBAvUQFjAAegQICRAC&url=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FHarikrishnan_Nair2%2Fpost%2FCould_anyone_provide_me_the_PSCAD_model_of_IEEE14-bus_system_or_any_bigger_size%2Fattachment%2F59d644c6c49f478072ead71a%2FAS%253A273819317538816%25401442295020231%2Fdownload%2FIEEE_14-bus_technical_note.docx&usg=AOvVaw12ywIiAkKH2BIEkFxl-Le2

    Google Scholar 

  27. Pasqualetti, F., Dorfler, F., Bullo, F.: Attack detection and identification in cyberphysical systems. IEEE Trans. Autom. Control 58(11), 2715–2729 (2013)

    Article  Google Scholar 

  28. Pasqualetti, F., D̈orfler, F., Bullo, F.: Cyber-physical attacks in power networks: models, fundamental limitations and monitor design. In: Proceedings of IEEE-Conference on Decision and Control, and European Control Conference (2011)

    Google Scholar 

  29. Mahdi, M., El-Arini, M., Fathy, A.: Identification of coherent generators using fuzzy C-means clustering algorithm and construction of dynamic equivalent of power system. J. Electr. Syst. 6(2), 2–18 (2010)

    Google Scholar 

  30. Shoukry, Y., Chong, M., Wakaiki, M., Nuzzo, P., Puggelli, A., Sangiovanni-Vincentelli, A., Seshia, S., Hespanha, J., Tabuado, P.: SMT-Based observer design for cyber-physical systems under sensor attacks. ACM Trans. Cyber-Phys Syst 2(1), 36–50 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horia Andrei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrei, H., Gaiceanu, M., Stanculescu, M., Marinescu, I., Andrei, P.C. (2020). Security Evaluation of Sensor Networks. In: Pricop, E., Fattahi, J., Dutta, N., Ibrahim, M. (eds) Recent Developments on Industrial Control Systems Resilience. Studies in Systems, Decision and Control, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-030-31328-9_11

Download citation

Publish with us

Policies and ethics