Advertisement

Incremental Learning Techniques Within a Self-updating Approach for Face Verification in Video-Surveillance

  • Eric Lopez-LopezEmail author
  • Carlos V. Regueiro
  • Xosé M. Pardo
  • Annalisa Franco
  • Alessandra Lumini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11868)

Abstract

Data labelling is still a crucial task which precedes the training of a face verification system. In contexts where training data are obtained online during operational stages, and/or the genuine identity changes over time, supervised approaches are less suitable.

This work proposes a face verification system capable of autonomously generating a robust model of a target identity (genuine) from a very limited amount of labelled data (one or a few video frames). A self-updating approach is used to wrap two well known incremental learning techniques, namely Incremental SVM and Online Sequential ELM.

The performance of both strategies are compared by measuring their ability to unsupervisedly improve the model of the genuine identity over time, as the system is queried by both genuine and impostor identities. Results confirm the feasibility and potential of the self-updating approach in a video-surveillance context.

Keywords

Face verification Video-surveillance Incremental learning Self-updating 

Notes

Acknowledgements

This work has received financial support from the Spanish government (project TIN2017-90135-R MINECO (FEDER)), from The Consellerí­a de Cultura, Educación e Ordenación Universitaria (accreditations 2016–2019, EDG431G/01 and ED431G/08), and reference competitive groups (2017–2020 ED431C 2017/69, and ED431C 2017/04), and from the European Regional Development Fund (ERDF). Eric López had received financial support from the Xunta de Galicia and the European Union (European Social Fund - ESF).

References

  1. 1.
    Bashbaghi, S., Granger, E., Sabourin, R., Bilodeau, G.A.: Dynamic ensembles of exemplar-SVMs for still-to-video face recognition. Pattern Recogn. 69, 61–81 (2017).  https://doi.org/10.1016/j.patcog.2017.04.014CrossRefGoogle Scholar
  2. 2.
    Becker, S.: Implicit learning in 3D object recognition: the importance of temporal context. Neural Comput. 11(2), 347–374 (1999).  https://doi.org/10.1162/089976699300016683CrossRefGoogle Scholar
  3. 3.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995).  https://doi.org/10.1007/BF00994018CrossRefzbMATHGoogle Scholar
  4. 4.
    De la Torre, M., Granger, E., Radtke, P.V., Sabourin, R., Gorodnichy, D.O.: Partially-supervised learning from facial trajectories for face recognition in video surveillance. Inf. Fusion 24, 31–53 (2015).  https://doi.org/10.1016/j.inffus.2014.05.006CrossRefGoogle Scholar
  5. 5.
    Dewan, M.A.A., Granger, E., Marcialis, G.L., Sabourin, R., Roli, F.: Adaptive appearance model tracking for still-to-video face recognition. Pattern Recogn. 49, 129–151 (2016).  https://doi.org/10.1016/j.patcog.2015.08.002CrossRefGoogle Scholar
  6. 6.
    Didaci, L., Marcialis, G.L., Roli, F.: Analysis of unsupervised template update in biometric recognition systems. Pattern Recogn. Lett. 37, 151–160 (2014).  https://doi.org/10.1016/j.patrec.2013.05.021CrossRefGoogle Scholar
  7. 7.
    Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015).  https://doi.org/10.1109/MCI.2015.2471196CrossRefGoogle Scholar
  8. 8.
    Franco, A., Maio, D., Maltoni, D.: Incremental template updating for face recognition in home environments. Pattern Recogn. 43(8), 2891–2903 (2010).  https://doi.org/10.1016/j.patcog.2010.02.017CrossRefzbMATHGoogle Scholar
  9. 9.
    Grossberg, S.: Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Netw. 1(1), 17–61 (1988).  https://doi.org/10.1016/0893-6080(88)90021-4CrossRefGoogle Scholar
  10. 10.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016).  https://doi.org/10.1109/CVPR.2016.90
  11. 11.
    Hoens, T.R., Polikar, R., Chawla, N.V.: Learning from streaming data with concept drift and imbalance: an overview. Prog. Artif. Intell. 1, 89–101 (2012).  https://doi.org/10.1007/s13748-011-0008-0CrossRefGoogle Scholar
  12. 12.
    Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006).  https://doi.org/10.1016/j.neucom.2005.12.126CrossRefGoogle Scholar
  13. 13.
    Huang, Z., et al.: A benchmark and comparative study of video-based face recognition on cox face database. IEEE Trans. Image Process. 24(12), 5967–5981 (2015).  https://doi.org/10.1109/TIP.2015.2493448MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009).  https://doi.org/10.1145/1577069.1755843CrossRefGoogle Scholar
  15. 15.
    Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. IEEE Trans. Signal Process. 52(8), 2165–2176 (2004).  https://doi.org/10.1109/TSP.2004.830991MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liang, N., Huang, G., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423 (2006).  https://doi.org/10.1109/TNN.2006.880583CrossRefGoogle Scholar
  17. 17.
    López-López, E., Pardo, X.M., Regueiro, C.V., Iglesias, R., Casado, F.E.: Dataset bias exposed in face verification. IET Biom. 8(4), 249–258 (2019).  https://doi.org/10.1049/iet-bmt.2018.5224CrossRefGoogle Scholar
  18. 18.
    Masi, I., Wu, Y., Hassner, T., Natarajan, P.: Deep face recognition: A survey. In: Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 471–478 (2018).  https://doi.org/10.1109/SIBGRAPI.2018.00067
  19. 19.
    Pernici, F., Bartoli, F., Bruni, M., Del Bimbo, A.: Memory based online learning of deep representations from video streams. In: Computer Vision and Pattern Recognition (CVPR), pp. 2324–2334 (2018).  https://doi.org/10.1109/CVPR.2018.00247
  20. 20.
    Pernici, F., Bimbo, A.D.: Unsupervised incremental learning of deep descriptors from video streams. In: International Conference on Multimedia Expo Workshops (ICMEW), pp. 477–482 (2017).  https://doi.org/10.1109/ICMEW.2017.8026276
  21. 21.
    Sohn, K., Liu, S., Zhong, G., Yu, X., Yang, M., Chandraker, M.: Unsupervised domain adaptation for face recognition in unlabeled videos. In: International Conference on Computer Vision (ICCV), pp. 5917–5925 (2017).  https://doi.org/10.1109/ICCV.2017.630
  22. 22.
    Villamizar, M., Sanfeliu, A., Moreno-Noguer, F.: Online learning and detection of faces with low human supervision. Vis. Comput. 35(3), 349–370 (2019).  https://doi.org/10.1007/s00371-018-01617-yCrossRefGoogle Scholar
  23. 23.
    Wang, R., Shan, S., Chen, X., Gao, W.: Manifold-manifold distance with application to face recognition based on image set. In: Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008).  https://doi.org/10.1109/CVPR.2008.4587719
  24. 24.
    Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos. In: International Conference on Computer Vision (ICCV), pp. 2794–2802 (2015).  https://doi.org/10.1109/ICCV.2015.320
  25. 25.
    Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In: Annual Meeting on Association for Computational Linguistics (ACL), pp. 189–196. Association for Computational Linguistics, Stroudsburg, PA, USA (1995).  https://doi.org/10.3115/981658.981684

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computer Architecture Group, CITICUniversidade da CoruñaA CoruñaSpain
  2. 2.Centro de Investigación en Tecnoloxí­as Intelixentes (CiTIUS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.DISI - Department of Computer Science and EngineeringUniversitá di BolognaBolognaItaly

Personalised recommendations