Skip to main content

Management of Coastal Erosion Under Climate Change Through Wave Farms

  • Chapter
  • First Online:
Ocean Energy and Coastal Protection

Abstract

In this chapter, the efficiency of wave farms in coastal protection under sea-level rise is investigated. A wave farm formed by 11 wave energy converters was modelled off Playa Granada, a gravel-dominated coast in Southern Spain, under three sea-level rise scenarios: the current water level and the water level in 2100 according to a low- and high-emission scenario. In order to explore the effects produced by the wave farm, the natural scenario without wave farm was also studied. Waves were propagated through the wave farm by means of Delft3D-Wave and breaking parameters were obtained in order to apply a longshore sediment transport (LST) formulation. The results obtained with the LST formulation were used in a one-line model to compute the changes in the position of the shoreline at the study site. The results highlight that wave farms are able to decrease beach erosion (shoreline retreat) even under sea-level rise scenarios. That makes wave farms attractive management strategies, as they contribute to the decarbonisation of the energy mix and more efficient in terms of coastal protection under sea-level rise than traditional hard-engineering structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abanades J, Greaves D, Iglesias G (2014) Coastal defence through wave farms. Coast Eng 91:299–307

    Article  Google Scholar 

  2. Abanades J, Greaves D, Iglesias G (2014) Wave farm impact on the beach profile: a case study. Coast Eng 86:36–44

    Article  Google Scholar 

  3. Abanades J, Greaves D, Iglesias G (2015) Wave farm impact on beach modal state. Mar Geol 361:126–135

    Article  Google Scholar 

  4. Abanades J, Flor-Blanco G, Flor G, Iglesias G (2018) Dual wave farms for energy production and coastal protection. Ocean Coast Manag 160:18–29. https://doi.org/10.1016/j.ocecoaman.2018.03.038

    Article  Google Scholar 

  5. Bergillos RJ, Rodríguez-Delgado C, López-Ruiz A, Millares A, Ortega-Sánchez M, Losada MA (2015) Recent human-induced coastal changes in the Guadalfeo river deltaic system (southern Spain). In: Proceedings of the 36th IAHR-international association for hydro-environment engineering and research world congress

    Google Scholar 

  6. Bergillos RJ, Ortega-Sánchez M, Losada MA (2015) Foreshore evolution of a mixed sand and gravel beach: the case of Playa Granada (Southern Spain). In: Proceedings of the 8th coastal sediments. World Scientific

    Google Scholar 

  7. Bergillos RJ, López-Ruiz A, Ortega-Sánchez M, Masselink G, Losada MA (2016) Implications of delta retreat on wave propagation and longshore sediment transport-Guadalfeo case study (southern Spain). Mar Geol 382:1–16

    Article  Google Scholar 

  8. Bergillos RJ, Rodríguez-Delgado C, Millares A, Ortega-Sánchez M, Losada MA (2016) Impact of river regulation on a mediterranean delta: assessment of managed versus unmanaged scenarios. Water Resour Res 52(7):5132–5148

    Article  Google Scholar 

  9. Bergillos RJ, Masselink G, McCall RT, Ortega-Sánchez M (2016) Modelling overwash vulnerability along mixed sand-gravel coasts with XBeach-G: case study of Playa Granada, southern Spain. In: Coastal engineering proceedings, vol 1(35), p 13

    Article  Google Scholar 

  10. Bergillos RJ, Ortega-Sánchez M, Masselink G, Losada MA (2016) Morpho-sedimentary dynamics of a micro-tidal mixed sand and gravel beach, Playa Granada, southern Spain. Mar Geol 379:28–38

    Article  Google Scholar 

  11. Bergillos RJ, Masselink G, Ortega-Sánchez M (2017) Coupling cross-shore and longshore sediment transport to model storm response along a mixed sand-gravel coast under varying wave directions. Coast Eng 129:93–104

    Article  Google Scholar 

  12. Bergillos RJ, Rodríguez-Delgado C, Ortega-Sánchez M (2017) Advances in management tools for modeling artificial nourishments in mixed beaches. J Mar Syst 172:1–13

    Article  Google Scholar 

  13. Bergillos RJ, Ortega-Sánchez M (2017) Assessing and mitigating the landscape effects of river damming on the Guadalfeo River delta, southern Spain. Landscape Urban Plann 165:117–129

    Article  Google Scholar 

  14. Bergillos RJ, López-Ruiz A, Principal-Gómez D, Ortega-Sánchez M (2018) An integrated methodology to forecast the efficiency of nourishment strategies in eroding deltas. Sci Total Environ 613:1175–1184

    Article  Google Scholar 

  15. Bergillos RJ, Lopez-Ruiz A, Medina-Lopez E, Monino A, Ortega-Sanchez M (2018) The role of wave energy converter farms on coastal protection in eroding deltas, Guadalfeo, southern Spain. J Clean Prod 171:356–367

    Article  Google Scholar 

  16. Carballo R, Iglesias G (2013) Wave farm impact based on realistic wave-WEC interaction. Energy 51:216–229

    Article  Google Scholar 

  17. Fernandez H, Iglesias G, Carballo R, Castro A, Fraguela J, Taveira-Pinto F, Sanchez M (2012) The new wave energy converter WaveCat: concept and laboratory tests. Mar Struct 29:58–70

    Article  Google Scholar 

  18. Fernandez H, Iglesias G, Carballo R, Castro A, Sánchez M, Taveira-Pinto F (2012) Optimization of the wavecat wave energy converter. Coast Eng Proc 1(33):5

    Article  Google Scholar 

  19. Holthuijsen L, Booij N, Ris R (1993) A spectral wave model for the coastal zone. ASCE

    Google Scholar 

  20. Iglesias G, Carballo R, Castro A, Fraga B (2009) Development and design of the WaveCat™ energy converter. In: Coastal engineering 2008: (in 5 volumes). World Scientific, Singapore. pp 3970–3982

    Google Scholar 

  21. Iglesias G, López M, Carballo R, Castro A, Fraguela JA, Frigaard P (2009) Wave energy potential in Galicia (NW Spain). Renew Energy 34(11):2323–2333

    Article  Google Scholar 

  22. Iglesias G, Fernándes H, Carballo R, Castro A, Taveira-Pinto F (2011) The wavecat-development of a new wave energy converter. In: World renewable energy congress-Sweden. Linköping University Electronic Press, Linköping, Sweden. pp 2151–2158. Accessed 8-13 May; 2011

    Google Scholar 

  23. Intergovernmental panel on climate change (2014) Climate change 2014: synthesis report. IPCC Geneva, Switzerland

    Google Scholar 

  24. Kieftenburg A (2001) A short overview of reflection formulations and suggestions for implementation in SWAN. Technical report, TU Delft, Department of Hydraulic Engineering

    Google Scholar 

  25. López-Ruiz A, Bergillos RJ, Raffo-Caballero JM, Ortega-Sánchez M (2018) Towards an optimum design of wave energy converter arrays through an integrated approach of life cycle performance and operational capacity. Appl Energy 209:20–32

    Article  Google Scholar 

  26. Ortega-Sánchez M, Bergillos RJ, López-Ruiz A, Losada MA (2017) Morphodynamics of mediterranean mixed sand and gravel coasts. Springer, Berlin

    Book  Google Scholar 

  27. Pelnard-Considère, R.: Essai de theorie de l’evolution des formes de rivage en plages de sable et de galets. Les Energies de la Mer: Compte Rendu Des Quatriemes Journees de L’hydraulique, Paris 13, 14 and 15 Juin 1956; Question III, rapport 1, 74-1-10 (1956)

    Google Scholar 

  28. Rodriguez-Delgado C, Bergillos RJ, Ortega-Sánchez M, Iglesias G (2018) Wave farm effects on the coast: the alongshore position. Sci Total Environ 640:1176–1186

    Article  Google Scholar 

  29. Rodriguez-Delgado C, Bergillos RJ, Ortega-Sánchez M, Iglesias G (2018) Protection of gravel-dominated coasts through wave farms: layout and shoreline evolution. Sci Total Environ 636:1541–1552

    Article  Google Scholar 

  30. Rodriguez-Delgado C, Bergillos RJ, Iglesias G (2019) Dual wave energy converter farms and coastline dynamics: the role of inter-device spacing. Sci Total Environ 646:1241–1252

    Article  Google Scholar 

  31. Rodriguez-Delgado C, Bergillos RJ, Iglesias G (2019) Dual wave farms for energy production and coastal protection under sea level rise. J Clean Prod 222:364–372

    Article  Google Scholar 

  32. Rusu E, Soares CG (2013) Coastal impact induced by a Pelamis wave farm operating in the Portuguese nearshore. Renew Energy 58:34–49

    Article  Google Scholar 

  33. van Rijn LC (2014) A simple general expression for longshore transport of sand, gravel and shingle. Coast Eng 90:23–39

    Article  Google Scholar 

Download references

Acknowledgements

The projects, grants, funding entities and data sources that have supported this chapter are specified in the preface of the book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael J. Bergillos .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bergillos, R.J., Rodriguez-Delgado, C., Iglesias, G. (2020). Management of Coastal Erosion Under Climate Change Through Wave Farms. In: Ocean Energy and Coastal Protection. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-31318-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31318-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31317-3

  • Online ISBN: 978-3-030-31318-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics