Skip to main content

In Vitro Plant Cell Cultures: A Route to Production of Natural Molecules and Systematic In Vitro Assays for their Biological Properties

  • Chapter
  • First Online:
  • 1500 Accesses

Abstract

Nature provides an array of medicinal plants that serve the society by treating a wide range of diseases. Many plants are on the verge of extinction due to their extensive use, ignorance, and restricted habitat. Thus, generation of in vitro cultures via “plant tissue culture techniques” is necessary for maintenance and large-scale propagation of flora. Additionally, these in vitro cultures also provide constant production of a wide variety of complex and structurally diverse secondary metabolites, possessing a range of therapeutic properties and biological activities. This chapter emphasizes on the establishment of in vitro plant cell cultures for secondary metabolite production and their applications in various biological assays. Furthermore, a brief description of in vitro assays is given to elucidate a particular type of bioactivity and its mechanism of action.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anulika NP, Ignatius EO, Raymond ES, Osasere O-I, Abiola HA (2016) The chemistry of natural product: plant secondary metabolites. Int J Technol Enhanc Emerg Eng Res 4:1–8

    Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharmaceut Anal 6:71–79

    Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  • Bidlack WR (2000) Phytochemicals as bioactive agents. Technomic Publishers, Lancaster, PA

    Book  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199

    Article  CAS  Google Scholar 

  • Caruso JL, Callahan J, DeChant C, Jayasimhulu K, Winget GD (2000) Carnosic acid in green callus and regenerated shoots of Rosmarinus officinalis. Plant Cell Rep 19:500–503

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Srivastava AK, Bisaria VS (2002) Optimization of culture parameters for production of podophyllotoxin in suspension culture of Podophyllum hexandrum. Appl Biochem Biotechnol 102–103:381–393

    Article  PubMed  Google Scholar 

  • Chen S-A, Wang X, Zhao B, Yuan X, Wang Y (2003) Production of crocin using Crocus sativus callus by two-stage culture system. Biotechnol Lett 25:1235–1238

    Article  CAS  PubMed  Google Scholar 

  • Choma IM, Grzelak EM (2011) Bioautography detection in thin-layer chromatography. J Chromatogr A 1218:2684–2691

    Article  CAS  PubMed  Google Scholar 

  • Edahiro J, Yamada M, Seike S, Kakigi Y, Miyanaga K, Nakamura M, Kanamori T, Seki M (2005) Separation of cultured strawberry cells producing anthocyanins in aqueous two-phase system. J Biosci Bioeng 100:449–454

    Article  CAS  PubMed  Google Scholar 

  • Falahi H, Sharifi M, Maivan HZ, Chashmi NA (2017) Phenylethanoid glycosides accumulation in roots of Scrophularia striata as a response to water stress. Environ Exp Bot 147:13–21

    Article  CAS  Google Scholar 

  • Garrat DC (1964) The quantitative analysis of drugs, Japan. Chapman and Hall, Japan

    Google Scholar 

  • Georgiev MI, Kuzeva SL, Pavlov AI, Kovacheva EG, Ilieva MP (2007) Elicitation of rosmarinic acid by Lavandula vera MM cell suspension culture with abiotic elicitors. World J Microbiol Biotechnol 23:301–304

    Article  CAS  Google Scholar 

  • Gomes de Melo J, de Sousa Araujo TA, Nobre T, de Almeida e Castro V, Lyra de Vasconcelos Cabral D, do Desterro Rodrigues M, Carneiro do Nascimento S, Cavalcanti de Amorim EL, de Albuquerque UP (2010) Antiproliferative activity, antioxidant capacity and tannin content in plants of semi-arid northeastern Brazil. Molecules 15:8534–8542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray AM, Flatt PR (1997) Nature’s own pharmacy: the diabetes perspective. Proc Nutr Soc 56:507–517

    Article  CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  • Griffits JB (1985) Advances in biotechnological processes: volume 2. FEBS Lett 188:168–169

    Article  Google Scholar 

  • Grzegorczyk I, Krolicka A, Wysokinska H (2006) Establishment of Salvia officinalis L. hairy root cultures for the production of rosmarinic acid. Z Naturforsch C 61:351–356

    Article  CAS  PubMed  Google Scholar 

  • Grzegorczyk I, Matkowski A, Wysokińska H (2007) Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chem 104:536–541

    Article  CAS  Google Scholar 

  • Gülçın İ, Oktay M, Kıreçcı E, Küfrevıoǧlu Öİ (2003) Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem 83:371–382

    Article  CAS  Google Scholar 

  • Guschin A, Ryzhikh P, Rumyantseva T, Gomberg M, Unemo M (2015) Treatment efficacy, treatment failures and selection of macrolide resistance in patients with high load of Mycoplasma genitalium during treatment of male urethritis with josamycin. BMC Infect Dis 15:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1995) The definition and measurement of antioxidants in biological systems. Free Radic Biol Med 18:125–126

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM, Aruoma OI (1987) The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495

    Article  CAS  Google Scholar 

  • Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jayaprakasha GK, Jaganmohan Rao L, Sakariah KK (2004) Antioxidant activities of flavidin in different in vitro model systems. Bioorg Med Chem 12:5141–5146

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Wesely EG, Zahir Hussain MI, Selvan N (2010) In vivo and in vitro phytochemical and antibacterial efficacy of Baliospermum montanum (Wïlld.) Muell. Arg. Asian Pac J Trop Med 3:894–897

    Article  Google Scholar 

  • Kaminaga Y, Nagatsu A, Akiyama T, Sugimoto N, Yamazaki T, Maitani T, Mizukami H (2003) Production of unnatural glucosides of curcumin with drastically enhanced water solubility by cell suspension cultures of Catharanthus roseus. FEBS Lett 555:311–316

    Article  CAS  PubMed  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced plant responses to herbivory. University of Chicago Press, Chicago, p 1997

    Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Verpoorte R (2010) Sample preparation for plant metabolomics. Phytochem Anal 21:4–13

    Article  CAS  PubMed  Google Scholar 

  • Kuete V, Wabo HK, Eyong KO, Feussi MT, Wiench B, Krusche B, Tane P, Folefoc GN, Efferth T (2011) Anticancer activities of six selected natural compounds of some cameroonian medicinal plants. PLoS One 6:e21762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunchandy E, Rao MNA (1990) Oxygen radical scavenging activity of curcumin. Int J Pharm 58:237–240

    Article  CAS  Google Scholar 

  • Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 65:418–420

    Article  CAS  PubMed  Google Scholar 

  • Lazar T (2003) Taiz, L. and Zeiger, E. Plant physiology. 3rd edn. Ann Bot 91:750–751

    Article  PubMed Central  Google Scholar 

  • Matkowski A (2008) Plant in vitro culture for the production of antioxidants—a review. Biotechnol Adv 26:548–560

    Article  CAS  PubMed  Google Scholar 

  • Mayers DL, Sobel JD, Ouellette M, Kaye KS, Marchaim D (2009) Antimicrobial drug resistance: clinical and epidemiological aspects. Springer, Dordrecht, Heidelberg, London

    Book  Google Scholar 

  • McCauley J, Zivanovic A, Skropeta D (2013) Bioassays for anticancer activities. Methods Mol Biol 1055:191–205

    Article  CAS  PubMed  Google Scholar 

  • Mensor LL, Menezes FS, Leitao GG, Reis AS, dos Santos TC, Coube CS, Leitao SG (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15:127–130

    Article  CAS  PubMed  Google Scholar 

  • Meyer AS, Isaksen A (1995) Application of enzymes as food antioxidants. Trends Food Sci Technol 6:300–304

    Article  CAS  Google Scholar 

  • Miura H, Kitamura Y, Ikenaga T, Mizobe K, Shimizu T, Nakamura M, Kato Y, Yamada T, Maitani T, Goda Y (1998) Anthocyanin production of Glehnia littoralis callus cultures. Phytochemistry 48:279–283

    Article  CAS  PubMed  Google Scholar 

  • Mulabagal Vanisree M, Lee C-Y, Lo S-F, Nalawade SM, Lin CY, Tsay H-S (2004) Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Botan Bull Acad Sin 45:1–22

    Google Scholar 

  • Nishikimi M, Appaji Rao N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854

    Article  CAS  PubMed  Google Scholar 

  • Noro T, Oda Y, Miyase T, Ueno A, Fukushima S (1983) Inhibitors of xanthine oxidase from the flowers and buds of Daphne genkwa. Chem Pharm Bull 31:3984–3987

    Article  CAS  Google Scholar 

  • O’Connell JE, Fox PF (2001) Significance and applications of phenolic compounds in the production and quality of milk and dairy products: a review. Int Dairy J 11:103–120

    Article  Google Scholar 

  • Parveen A, Chakraborty A, Konreddy AK, Chakravarty H, Sharon A, Trivedi V, Bal C (2013) Skeletal hybridization and PfRIO-2 kinase modeling for synthesis of alpha-pyrone analogs as anti-malarial agent. Eur J Med Chem 70:607–612

    Article  CAS  PubMed  Google Scholar 

  • Pavlov A, Georgiev M, Bley T (2007) Batch and fed-batch production of betalains by red beet (Beta vulgaris) hairy roots in a bubble column reactor. Z Naturforsch C 62:439–446

    Article  CAS  PubMed  Google Scholar 

  • Petrovska B (2012a) Historical review of medicinal plants’ usage. Pharmacogn Rev 6:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrovska BB (2012b) Historical review of medicinal plants’ usage. Pharmacogn Rev 6:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Prakash G, Srivastava AK (2006) Modeling of azadirachtin production by Azadirachta indica and its use for feed forward optimization studies. Biochem Eng J 29:62–68

    Article  CAS  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Markham KR, Paré PW, Dixon RA, Mabry TJ (1993) Flavonoids from elicitor-treated cell suspension cultures of Cephalocereus senilis. Phytochemistry 32:925–928

    Article  Google Scholar 

  • Rajaram K, Moushmi M, Velayutham Dass Prakash M, Kumpati P, Ganasaraswathi M, Sureshkumar P (2013) Comparative bioactive studies between wild plant and callus culture of tephrosia tinctoria pers. Appl Biochem Biotechnol 171:2105–2120

    Article  CAS  PubMed  Google Scholar 

  • Rajendran R, Narashimman BS, Trivedi V, Chaturvedi R (2017) Isolation and quantification of antimalarial N-alkylamides from flower-head derived in vitro callus cultures of Spilanthes paniculata. J Biosci Bioeng 124:99–107

    Article  CAS  PubMed  Google Scholar 

  • Rich SM, Leendertz FH, Xu G, LeBreton M, Djoko CF, Aminake MN, Takang EE, Diffo JL, Pike BL, Rosenthal BM, Formenty P, Boesch C, Ayala FJ, Wolfe ND (2009) The origin of malignant malaria. Proc Natl Acad Sci U S A 106:14902–14907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37:837–841

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal GA, Berenbaum MR (1991) Herbivores, their interactions with secondary plant metabolites. Academic Press, San Diego, CA

    Google Scholar 

  • Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003–1008

    Article  CAS  PubMed  Google Scholar 

  • Salazar R, Pozos ME, Cordero P, Perez J, Salinas MC, Waksman N (2008) Determination of the antioxidant activity of plants from Northeast Mexico. Pharm Biol 46:166–170

    Article  CAS  Google Scholar 

  • Sampaio BL, Edrada-Ebel R, Da Costa FB (2016) Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Sci Rep 6:29265

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Sampedro MA, Fernandez-Tarrago J, Corchete P (2005) Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. J Biotechnol 119:60–69

    Article  CAS  PubMed  Google Scholar 

  • Schmeda-Hirschmann G, Razmilic I, Sauvain M, Moretti C, Muñoz V, Ruiz E, Balanza E, Fournet A (1996) Antiprotozoal activity of Jatrogrossidione from Jatropha grossidentata and Jatrophone from Jatropha isabellii. Phytother Res 10:375–378

    Article  CAS  Google Scholar 

  • Sharma RA, Steward WP, Gescher AJ (2007) Pharmacokinetics and pharmacodynamics of curcumin. Adv Exp Med Biol 595:453–470

    Article  PubMed  Google Scholar 

  • Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948

    Article  CAS  Google Scholar 

  • Singh M, Roy B, Tandon V, Chaturvedi R (2014) Extracts of dedifferentiated cultures of Spilanthes acmella Murr. possess antioxidant and anthelmintic properties and hold promise as an alternative source of herbal medicine. Plant Biosyst 148:259–267

    Article  Google Scholar 

  • Sreejayan, Rao MN (1997) Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 49:105–107

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P, Kasoju N, Bora U, Chaturvedi R (2009) Dedifferentiation of leaf explants and cytotoxic activity of an aqueous extract of cell cultures of Lantana camara L. Plant Cell Tissue Organ Cult 99:1–7

    Article  CAS  Google Scholar 

  • Srivastava P, Kasoju N, Bora U, Chaturvedi R (2010) Accumulation of betulinic, oleanolic, and ursolic acids in In vitro cell cultures of Lantana camara L. and their significant cytotoxic effects on HeLa cell lines. Biotechnol Bioprocess Eng 15:1038–1046

    Article  CAS  Google Scholar 

  • Thummel RP (1979) The basis of organic chemistry. Second Edition (Fessenden, Ralph J.; Fessenden, Joan S.). J Chem Educ 56:A144

    Article  Google Scholar 

  • Umesh TG (2014) In vitro callus induction and antioxidant potential of Decalepis hamiltonii (wight and arn). Int J Pharm Pharm Sci 6:452–456

    Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Vijayalakshmi K, Selvaraj CI, Sivalingam S, Arumugam P (2014) In vitro investigation of antidiabetic potential of selected traditional medicinal plants. Int J Pharmacogn Phytochem Res 6:856–861

    Google Scholar 

  • Wickramaratne MN, Punchihewa JC, Wickramaratne DBM (2016) In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complement Altern Med 16:466

    Article  PubMed  PubMed Central  Google Scholar 

  • Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Fortschr Med 2:251

    CAS  Google Scholar 

  • Zhang MH, Lu F, Cao J, Gao Q (2015) Comparative study of assay methods for in vitro antimalarial drug efficacy testing in Plasmodium falciparum. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 27:146–151

    CAS  PubMed  Google Scholar 

  • Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. In: Zhong JJ, Byun SY, Cho GH, Choi JW, Haigh JR, Honda H, James E, Kijne JW, Kim DI, Kobayashi T, Lee JM, Kino-oka M, Linden JC, Liu C, Memelink J, Mirjalili N, Nagatome H, Taya M, Phisaphalong M, van der Heijden R, Verpoorte R (eds) Plant cells. Springer, Berlin, Heidelberg

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakhi Chaturvedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, P., Chaturvedi, R. (2019). In Vitro Plant Cell Cultures: A Route to Production of Natural Molecules and Systematic In Vitro Assays for their Biological Properties. In: Joshee, N., Dhekney, S., Parajuli, P. (eds) Medicinal Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-31269-5_10

Download citation

Publish with us

Policies and ethics