Skip to main content

Computational Methodologies for Exploring Nano-engineered Materials

  • Chapter
  • First Online:
Nanoengineering Materials for Biomedical Uses

Abstract

Biomimetic nano-engineered materials have emerged as new potential additives for biomedical therapies. However, one of the most critical challenges that remain is the ability to produce responsive nanostructures that respond to external stimuli, enhance existing properties, and introduce new functionalities. In this regard, the use of computational methodologies to design, simulate, and visualize the interaction between biological substrates and nanostructures provides a powerful tool for better understanding structure/function. This chapter focuses on the use of molecular modeling and molecular dynamics (MD) methods to assist the design of bio-nanomaterials and characterize the structural aspects of the interaction between nanostructures and biological molecules. Computational simulations allow the analysis of the behavior of atoms and molecules for a period of time employing integrated mathematical and physical equations. Here, we describe how these theoretical methods are used to design and model nanomaterials in a rational way, as well as to evaluate its functionalization and association with drug-like compounds. Methodologies used in the field of computational nanotechnology include de novo modeling, parametrization, molecular dynamics simulations under functional conditions, binding free energy calculations, as well as future perspectives oriented to use reactive force field techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2(5):347–60.

    Article  CAS  Google Scholar 

  2. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76.

    Article  CAS  Google Scholar 

  3. Huh Y-M, Jun Y-w, Song H-T, Kim S, Choi J-s, Lee J-H, Yoon S, Kim K-S, Shin J-S, Suh J-S and others. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc. 2005;127(35):12387–91.

    Article  CAS  Google Scholar 

  4. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436(7050):568–72.

    Article  CAS  Google Scholar 

  5. Popovic N, Brundin P. Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. Int J Pharm. 2006;314(2):120–6.

    Article  CAS  Google Scholar 

  6. Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protoc. 2016;11:1775.

    Article  CAS  Google Scholar 

  7. Verma S, Domb AJ, Kumar N. Nanomaterials for regenerative medicine. Nanomedicine. 2010;6(1):157–81.

    Article  Google Scholar 

  8. Merkle RC. Computational nanotechnology. Nanotechnology. 1991;2:134–41.

    Article  Google Scholar 

  9. Tetley TD. Health effects of nanomaterials. Biochem Soc Trans. 2007;35(Pt 3):527–31.

    Article  CAS  Google Scholar 

  10. Saini B, Srivastava S. Nanoinformatics: predicting toxicity using computational modeling. Comput Intell Big Data Anal. 2018. pp. 65–73.

    Google Scholar 

  11. Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Ann Rev Biomed Eng. 2012;14:1–16.

    Article  CAS  Google Scholar 

  12. Bora T, Dousse A, Sharma K, Sarma K, Baev A, Hornyak GL, Dasgupta G. Modeling nanomaterial physical properties: theory and simulation. Int J Smart Nano Mater. 2019;10(2):116–43.

    Article  Google Scholar 

  13. Lamon L, Asturiol D, Vilchez A, Ruperez-Illescas R, Cabellos J, Richarz A, Worth A. Computational models for the assessment of manufactured nanomaterials: development of model reporting standards and mapping of the model landscape. Comput Toxicol. 2019;9:143–51.

    Article  CAS  Google Scholar 

  14. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27.

    Article  CAS  Google Scholar 

  15. Barenholz Y. Doxil®–the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.

    Article  CAS  Google Scholar 

  16. Yacoub Tyrone J, Reddy Allam S, Szleifer I. Structural effects and translocation of doxorubicin in a DPPC/Chol bilayer: the role of cholesterol. Biophys J. 2011;101(2):378–85.

    Article  CAS  Google Scholar 

  17. Xiang T-X, Jiang Z-Q, Song L, Anderson BD. Molecular dynamics simulations and experimental studies of binding and mobility of 7-tert-butyldimethylsilyl-10-hydroxycamptothecin and its 20(S)-4-aminobutyrate ester in DMPC membranes. Mol Pharm. 2006;3(5):589–600.

    Article  CAS  Google Scholar 

  18. Xiang T-X, Anderson BD. Liposomal drug transport: a molecular perspective from molecular dynamics simulations in lipid bilayers. Adv Drug Deliv Rev. 2006;58(12–13):1357–78.

    Article  CAS  Google Scholar 

  19. Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernández S, de la Fuente JM, Nienhaus GU, Parak WJ. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano. 2015;9(7):6996–7008.

    Article  CAS  Google Scholar 

  20. Shen Z, Loe DT, Awino JK, Kröger M, Rouge JL, Li Y. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles. Nanoscale. 2016;8(31):14821–35.

    Article  CAS  Google Scholar 

  21. Haume K, Mason NJ, Solov’yov AV. Modeling of nanoparticle coatings for medical applications. Eur Phys J D. 2016;70(9):181.

    Google Scholar 

  22. Marasini R, Pitchaimani A, Nguyen TDT, Comer J, Aryal S. The influence of polyethylene glycol passivation on the surface plasmon resonance induced photothermal properties of gold nanorods. Nanoscale. 2018;10(28):13684–93.

    Article  CAS  Google Scholar 

  23. Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M and others. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45(5):1457–1501.

    Article  CAS  Google Scholar 

  24. Vergara-Jaque A, Comer J, Monsalve L, González-Nilo FD, Sandoval C. Computationally Efficient methodology for atomic-level characterization of dendrimer-drug complexes: a comparison of amine- and acetyl-terminated PAMAM. J Phys Chem B. 2013;117(22):6801–13.

    Article  CAS  Google Scholar 

  25. Khalilov U, Bogaerts A, Neyts EC. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors. Nat Commun. 2015;6:10306.

    Article  CAS  Google Scholar 

  26. Shimizu K, Nakamura H, Watano S. MD simulation study of direct permeation of a nanoparticle across the cell membrane under an external electric field. Nanoscale. 2016;8(23):11897–906.

    Article  CAS  Google Scholar 

  27. Krüger DM, Kamerlin SCL. Micelle maker: an online tool for generating equilibrated micelles as direct input for molecular dynamics simulations. ACS Omega. 2017;2(8):4524–30.

    Article  CAS  Google Scholar 

  28. Chu Z, Han Y, Bian T, De S, Král P, Klajn R. Supramolecular control of azobenzene switching on nanoparticles. J Am Chem Soc. 2019;141(5):1949–60.

    Article  CAS  Google Scholar 

  29. Ding H-m, Ma Y-q. Controlling cellular uptake of nanoparticles with pH-sensitive polymers. Sci Rep. 2013;3:2804.

    Article  Google Scholar 

  30. von Maltzahn G, Park J-H, Lin KY, Singh N, Schwöppe C, Mesters R, Berdel WE, Ruoslahti E, Sailor MJ, Bhatia SN. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat Mater. 2011;10(7):545–52.

    Article  CAS  Google Scholar 

  31. Llopis-Lorente A, Díez P, Sánchez A, Marcos MD, Sancenón F, Martínez-Ruiz P, Villalonga R, Martínez-Máñez R. Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nat Comm. 2017;8:15511.

    Article  CAS  Google Scholar 

  32. Saini B, Srivastava S. Nanoinformatics: Predicting Toxicity Using Computational Modeling. In: Satyanarayana C, Rao KN, Bush RG, editors. Computational intelligence and big data analytics: applications in bioinformatics. Singapore: Springer; 2019. p. 65–73.

    Chapter  Google Scholar 

  33. Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q. Protein corona-mediated mitigation of cytotoxicity of Graphene Oxide. ACS Nano. 2011;5(5):3693–700.

    Article  CAS  Google Scholar 

  34. Baweja L, Balamurugan K, Subramanian V, Dhawan A. Hydration patterns of Graphene-Based Nanomaterials (GBNMs) play a major role in the stability of a helical protein: a molecular dynamics simulation study. Langmuir. 2013;29(46):14230–8.

    Article  CAS  Google Scholar 

  35. Comer J, Chen R, Poblete H, Vergara-Jaque A, Riviere JE. Predicting adsorption affinities of small molecules on carbon nanotubes using molecular dynamics simulation. ACS Nano. 2015;9(12):11761–74.

    Article  CAS  Google Scholar 

  36. Slocik JM, Naik RR. Probing peptide-nanomaterial interactions. Chem Soc Rev. 2010;39(9):3454–63.

    Article  CAS  Google Scholar 

  37. Poblete H, Agarwal A, Thomas SS, Bohne C, Ravichandran R, Phopase J, Comer J, Alarcon EI. New Insights into peptide-silver nanoparticle interaction: deciphering the role of cysteine and lysine in the peptide sequence. Langmuir. 2016;32(1):265–73.

    Article  CAS  Google Scholar 

  38. Heinz H, Farmer BL, Pandey RB, Slocik JM, Patnaik SS, Pachter R, Naik RR. Nature of molecular interactions of Peptides with Gold, Palladium, and Pd−Au bimetal surfaces in aqueous solution. J Am Chem Soc. 2009;131(28):9704–14.

    Article  CAS  Google Scholar 

  39. Coppage R, Slocik JM, Briggs BD, Frenkel AI, Heinz H, Naik RR, Knecht MR. Crystallographic recognition controls peptide binding for bio-based nanomaterials. J Am Chem Soc. 2011;133(32):12346–9.

    Article  CAS  Google Scholar 

  40. Heinz H, Lin T-J, Kishore Mishra R, Emami FS. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir. 2013;29(6):1754–65.

    Article  CAS  Google Scholar 

  41. Katoch J, Kim SN, Kuang Z, Farmer BL, Naik RR, Tatulian SA, Ishigami M. Structure of a peptide adsorbed on Graphene and Graphite. Nano Lett. 2012;12(5):2342–6.

    Article  CAS  Google Scholar 

  42. Caballero J, Poblete H, Navarro C, Alzate-Morales JH. Association of nicotinic acid with a poly(amidoamine) dendrimer studied by molecular dynamics simulations. J Mol Graph Model. 2013;39:71–8.

    Article  CAS  Google Scholar 

  43. Maingi V, Kumar MVS, Maiti PK. PAMAM dendrimer-drug interactions: Effect of pH on the binding and release pattern. J Phys Chem B. 2012;116(14):4370–6.

    Article  CAS  Google Scholar 

  44. Carrasco-Sánchez V, Vergara-Jaque A, Zuñiga M, Comer J, John A, Nachtigall FM, Valdes O, Duran-Lara EF, Sandoval C, Santos LS. In situ and in silico evaluation of amine- and folate-terminated dendrimers as nanocarriers of anesthetics. Eur J Med Chem. 2014;73:250–7.

    Article  CAS  Google Scholar 

  45. Sun C, Tang T, Uludag H. A molecular dynamics simulation study on the effect of lipid substitution on polyethylenimine mediated siRNA complexation. Biomaterials. 2013;34(11):2822–33.

    Article  CAS  Google Scholar 

  46. Vilos C, Morales FA, Solar PA, Herrera NS, Gonzalez-Nilo FD, Aguayo DA, Mendoza HL, Comer J, Bravo ML, Gonzalez PA and others. Paclitaxel-PHBV nanoparticles and their toxicity to endometrial and primary ovarian cancer cells. Biomaterials. 2013;34(16):4098–4108.

    Article  CAS  Google Scholar 

  47. Azhagiya Singam ER, Zhang Y, Magnin G, Miranda-Carvajal I, Coates L, Thakkar R, Poblete H, Comer J. Thermodynamics of adsorption on graphenic surfaces from aqueous solution. J Chem Theory Comput. 2019;15(2):1302–16.

    Article  CAS  Google Scholar 

  48. Hughes ZE, Tomásio SM, Walsh TR. Efficient simulations of the aqueous bio-interface of graphitic nanostructures with a polarisable model. Nanoscale. 2014;6(10):5438–48.

    Article  CAS  Google Scholar 

  49. Robertson AW, Warner JH. Atomic resolution imaging of graphene by transmission electron microscopy. Nanoscale. 2013;5(10):4079–93.

    Article  CAS  Google Scholar 

  50. Li Y, Tian Y, Zheng W, Feng Y, Huang R, Shao J, Tang R, Wang P, Jia Y, Zhang J and others. Composites of bacterial cellulose and small molecule-decorated gold nanoparticles for treating gram-negative bacteria-infected wounds. Small 2017;13(27):1700130.

    Article  CAS  Google Scholar 

  51. Lei Y, Tang L, Xie Y, Xianyu Y, Zhang L, Wang P, Hamada Y, Jiang K, Zheng W, Jiang X. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat Commun. 2017;8:15130.

    Article  Google Scholar 

  52. Deyev S, Proshkina G, Ryabova A, Tavanti F, Menziani MC, Eidelshtein G, Avishai G, Kotlyar A. Synthesis, characterization, and selective delivery of DARPin–Gold nanoparticle conjugates to cancer cells. Bioconjugate Chem. 2017;28(10):2569–74.

    Article  CAS  Google Scholar 

  53. Lim E-K, Kim T, Paik S, Haam S, Huh Y-M, Lee K. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev. 2015;115(1):327–94.

    Article  CAS  Google Scholar 

  54. Charchar P, Christofferson AJ, Todorova N, Yarovsky I. Understanding and designing the gold-bio interface: insights from simulations. Small. 2016;12(18):2395–418.

    Article  CAS  Google Scholar 

  55. Park J-W, Shumaker-Parry JS. Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles. J Am Chem Soc. 2014;136(5):1907–21.

    Article  CAS  Google Scholar 

  56. Iori F, Di Felice R, Molinari E, Corni S. GolP: an atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water. J Comput Chem. 2009;30(9):1465–76.

    Article  CAS  Google Scholar 

  57. Hoefling M, Iori F, Corni S, Gottschalk K-E. Interaction of Amino Acids with the Au(111) surface: adsorption free energies from molecular dynamics simulations. Langmuir. 2010;26(11):8347–51.

    Article  CAS  Google Scholar 

  58. Hoefling M, Monti S, Corni S, Gottschalk KE. Interaction of β-sheet folds with a gold surface. PLoS ONE. 2011;6(6):e20925.

    Article  CAS  Google Scholar 

  59. Tang M, Gandhi NS, Burrage K, Gu Y. Interaction of gold nanosurfaces/nanoparticles with collagen-like peptides. Phys Chem Chem Phys. 2019;21(7):3701–11.

    Article  CAS  Google Scholar 

  60. Camarada MB, Comer J, Poblete H, Azhagiya Singam ER, Marquez-Miranda V, Morales-Verdejo C, Gonzalez-Nilo FD. Experimental and computational characterization of the interaction between gold nanoparticles and polyamidoamine dendrimers. Langmuir. 2018;34(34):10063–72.

    Article  CAS  Google Scholar 

  61. Iori F, Corni S. Including image charge effects in the molecular dynamics simulations of molecules on metal surfaces. J Comput Chem. 2008;29(10):1656–66.

    Article  CAS  Google Scholar 

  62. Chen D-L, Al-Saidi WA, Johnson JK. Noble gases on metal surfaces: insights on adsorption site preference. Phys Rev B. 2011;84(24):241405.

    Article  CAS  Google Scholar 

  63. Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118(45):11225–36.

    Article  CAS  Google Scholar 

  64. Cicero G, Calzolari A, Corni S, Catellani A. Anomalous wetting layer at the Au(111) surface. J Phys Chem Lett. 2011;2(20):2582–6.

    Article  CAS  Google Scholar 

  65. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S and others. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998;102(18):3586–3616.

    Google Scholar 

  66. Wright LB, Rodger PM, Walsh TR, Corni S. First-principles-based force field for the interaction of proteins with Au(100)(5 × 1): an extension of GolP-CHARMM. J Phys Chem C. 2013;117(46):24292–306.

    Article  CAS  Google Scholar 

  67. Wright LB, Rodger PM, Corni S, Walsh TR. GolP-CHARMM: first-principles based force fields for the interaction of proteins with Au(111) and Au(100). J Chem Theory Comput. 2013;9(3):1616–30.

    Article  CAS  Google Scholar 

  68. Perfilieva OA, Pyshnyi DV, Lomzov AA. Molecular dynamics simulation of polarizable gold nanoparticles interacting with Sodium Citrate. J Chem Theory Comput. 2019;15(2):1278–92.

    Article  CAS  Google Scholar 

  69. Hughes ZE, Wright LB, Walsh TR. Biomolecular adsorption at aqueous silver interfaces: first-principles calculations, polarizable force-field simulations, and comparisons with Gold. Langmuir. 2013;29(43):13217–29.

    Article  CAS  Google Scholar 

  70. Alarcon EI, Udekwu KI, Noel CW, Gagnon LBP, Taylor PK, Vulesevic B, Simpson MJ, Gkotzis S, Islam MM, Lee C-J and others. Safety and efficacy of composite collagen–silver nanoparticle hydrogels as tissue engineering scaffolds. Nanoscale 2015;7(44):18789–98.

    Article  CAS  Google Scholar 

  71. Alarcon EI, Udekwu K, Skog M, Pacioni NL, Stamplecoskie KG, González-Béjar M, Polisetti N, Wickham A, Richter-Dahlfors A, Griffith M and others. The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials 2012;33(19):4947–56.

    Article  CAS  Google Scholar 

  72. Hosoyama K, Ahumada M, McTiernan CD, Bejjani J, Variola F, Ruel M, Xu B, Liang W, Suuronen EJ, Alarcon EI. Multi-functional thermo-crosslinkable collagen-metal nanoparticle composites for tissue regeneration: nanosilver vs. nanogold. RSC Adv. 2017;7(75):47704–08.

    Article  CAS  Google Scholar 

  73. Lazurko C, Ahumada M, Valenzuela-Henríquez F, Alarcon EI. NANoPoLC algorithm for correcting nanoparticle concentration by sample polydispersity. Nanoscale. 2018;10(7):3166–70.

    Article  CAS  Google Scholar 

  74. Ahumada M, Lissi E, Montagut AM, Valenzuela-Henríquez F, Pacioni NL, Alarcon EI. Association models for binding of molecules to nanostructures. Analyst. 2017;142(12):2067–89.

    Article  CAS  Google Scholar 

  75. Ahumada M, Jacques E, Andronic C, Comer J, Poblete H, Alarcon EI. Novel specific peptides as superior surface stabilizers for silver nano structures: role of peptide chain length. J Mater Chem B. 2017;5(45):8925–8.

    Article  CAS  Google Scholar 

  76. Jacques E, Ahumada M, Rector B, Yousefalizadeh G, Galaz-Araya C, Recabarren R, Stamplecoskie K, Poblete H, Alarcon EI. Effect of nanosilver surfaces on peptide reactivity towards reactive oxygen species. Nanoscale. 2018;10(34):15911–7.

    Article  CAS  Google Scholar 

  77. Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, Jin H, Parker KK, Langer R, Kohane DS. Nanowired three-dimensional cardiac patches. Nat Nanotechnol. 2011;6(11):720–5.

    Article  CAS  Google Scholar 

  78. Goel K, Zuñiga-Bustos M, Lazurko C, Jacques E, Galaz-Araya C, Valenzuela-Henriquez F, Pacioni NL, Couture J-F, Poblete H, Alarcon EI. Nanoparticle concentration vs surface area in the interaction of thiol-containing molecules: toward a rational nanoarchitectural design of hybrid materials. ACS Appl Mater Inter. 2019;11(19):17697–705.

    Article  CAS  Google Scholar 

  79. Lemkul JA, Huang J, Roux B, MacKerell AD. An empirical polarizable force field based on the classical drude oscillator model: development history and recent applications. Chem Rev. 2016;116(9):4983–5013.

    Article  CAS  Google Scholar 

  80. Yanamala N, Kagan VE, Shvedova AA. Molecular modeling in structural nano-toxicology: Interactions of nano-particles with nano-machinery of cells. Adv Drug Deliv Rev. 2013;65(15):2070–7.

    Article  CAS  Google Scholar 

  81. Ozboyaci M, Kokh DB, Corni S, Wade RC. Modeling and simulation of protein–surface interactions: achievements and challenges. Q Rev Biophys 2016;49.

    Google Scholar 

  82. Yarovsky I, Hearn MTW, Aguilar MI. Molecular simulation of peptide interactions with an RP-HPLC sorbent. J Phys Chem B. 1997;101(50):10962–70.

    Article  CAS  Google Scholar 

  83. Noon WH, Kong Y, Ma J. Molecular dynamics analysis of a buckyball-antibody complex. PNAS. 2002;99(Suppl 2):6466–70.

    Article  CAS  Google Scholar 

  84. Gao H, Kong Y, Cui D, Ozkan CS. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 2003;3(4):471–3.

    Article  CAS  Google Scholar 

  85. Raffaini G, Ganazzoli F. Molecular dynamics simulation of the adsorption of a fibronectin module on a graphite surface . Langmuir. 2004;20(8):3371–8.

    Article  CAS  Google Scholar 

  86. Lu G, Maragakis P, Kaxiras E. Carbon Nanotube Interaction with DNA. Nano Lett. 2005;5(5):897–900.

    Article  CAS  Google Scholar 

  87. Johnson RR, Johnson ATC, Klein ML. Probing the structure of DNA–carbon nanotube hybrids with molecular dynamics. Nano Lett. 2008;8(1):69–75.

    Article  CAS  Google Scholar 

  88. Bedrov D, Smith GD, Davande H, Li L. Passive transport of C60 fullerenes through a lipid membrane: a molecular dynamics simulation study. J Phys Chem B. 2008;112(7):2078–84.

    Article  CAS  Google Scholar 

  89. Li Y, Chen X, Gu N. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. J Phys Chem B. 2008;112(51):16647–53.

    Article  CAS  Google Scholar 

  90. Wang H, Michielssens S, Moors SLC, Ceulemans A. Molecular dynamics study of dipalmitoylphosphatidylcholine lipid layer self-assembly onto a single-walled carbon nanotube. Nano Res. 2009;2(12):945–54.

    Article  CAS  Google Scholar 

  91. Chiu C-C, Dieckmann GR, Nielsen SO. Role of peptide–peptide interactions in stabilizing peptide-wrapped single-walled carbon nanotubes: a molecular dynamics study. Peptide Sci 2009;92(3):156–163.

    Article  CAS  Google Scholar 

  92. Chiu C-C, Dieckmann GR, Nielsen SO. Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces. J Phys Chem B 2008;112(51):16326–33.

    Article  CAS  Google Scholar 

  93. Ngo VA, Kalia RK, Nakano A, Vashishta P. Supercrystals of DNA-functionalized gold nanoparticles: a million-atom molecular dynamics simulation study. J Phys Chem C. 2012;116(36):19579–85.

    Article  CAS  Google Scholar 

  94. Ramezani F, Habibi M, Rafii-Tabar H, Amanlou M. Effect of peptide length on the conjugation to the gold nanoparticle surface: a molecular dynamic study. DARU J Pharm Sci. 2015;23(1):9.

    Article  CAS  Google Scholar 

  95. Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 1999;314(1):141–51.

    Article  CAS  Google Scholar 

  96. Corni S, Hnilova M, Tamerler C, Sarikaya M. Conformational behavior of genetically-engineered Dodecapeptides as a determinant of binding affinity for Gold. J Phys Chem C. 2013;117(33):16990–7003.

    Article  CAS  Google Scholar 

  97. Li H, Luo Y, Derreumaux P, Wei G. Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer’s Amyloid-β(16-22) peptide. Biophys J. 2011;101(9):2267–76.

    Article  CAS  Google Scholar 

  98. Liao C, Zhou J. Replica-exchange molecular dynamics simulation of basic fibroblast growth factor adsorption on hydroxyapatite. J Phys Chem B. 2014;118(22):5843–52.

    Article  CAS  Google Scholar 

  99. Hosseinzadeh G, Maghari A, Farnia SMF, Moosavi-Movahedi AA. Interaction mechanism of insulin with ZnO nanoparticles by replica exchange molecular dynamics simulation. J Biomol Struct Dyn. 2018;36(14):3623–35.

    Article  CAS  Google Scholar 

  100. Liu P, Kim B, Friesner RA, Berne BJ. Replica exchange with solute tempering: a method for sampling biological systems in explicit water. PNAS. 2005;102(39):13749–54.

    Article  CAS  Google Scholar 

  101. Tang Z, Palafox-Hernandez JP, Law W-C, Hughes ZE, Swihart MT, Prasad PN, Knecht MR, Walsh TR. Biomolecular recognition principles for bionanocombinatorics: an integrated approach to elucidate enthalpic and entropic factors. ACS Nano. 2013;7(11):9632–46.

    Article  CAS  Google Scholar 

  102. Song M, Sun Y, Luo Y, Zhu Y, Liu Y, Li H. Exploring the mechanism of inhibition of au nanoparticles on the aggregation of Amyloid-β(16-22) peptides at the atom level by all-atom molecular dynamics. Int J Mol Sci 2018;19(6).

    Article  CAS  Google Scholar 

  103. Xie L, Luo Y, Lin D, Xi W, Yang X, Wei G. The molecular mechanism of fullerene-inhibited aggregation of Alzheimer’s β-amyloid peptide fragment. Nanoscale. 2014;6(16):9752–62.

    Article  CAS  Google Scholar 

  104. Free Energy Calculations. Theory and applications in Chemistry and Biology. Berlin, Heidelberg: Springer; 2007.

    Google Scholar 

  105. Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J Comput Phys. 1977;23(2):187–99.

    Article  Google Scholar 

  106. Torrie GM, Valleau JP. Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chem Phys Lett. 1974;28(4):578–81.

    Article  CAS  Google Scholar 

  107. Laio A, Parrinello M. Escaping free-energy minima. PNAS. 2002;99(20):12562–6.

    Article  CAS  Google Scholar 

  108. Izrailev S, Stepaniants S, Balsera M, Oono Y, Schulten K. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J. 1997;72(4):1568–81.

    Article  CAS  Google Scholar 

  109. Darve E, Pohorille A. Calculating free energies using average force. J Chem Phys. 2001;115(20):9169–83.

    Article  CAS  Google Scholar 

  110. Lehn RCV, Alexander-Katz A. Energy landscape for the insertion of amphiphilic nanoparticles into lipid membranes: a computational study. PLoS ONE. 2019;14(1):e0209492.

    Article  CAS  Google Scholar 

  111. Nademi Y, Tang T, Uludağ H. Steered molecular dynamics simulations reveal a self-protecting configuration of nanoparticles during membrane penetration. Nanoscale. 2018;10(37):17671–82.

    Article  CAS  Google Scholar 

  112. Li Y, Gu N. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study. J Phys Chem B. 2010;114(8):2749–54.

    Article  CAS  Google Scholar 

  113. Ferreira AF, Comune M, Rai A, Ferreira L, Simões PN. Atomistic-level investigation of a LL37-conjugated gold nanoparticle by well-tempered metadynamics. J Phys Chem B. 2018;122(35):8359–66.

    Article  CAS  Google Scholar 

  114. Prakash A, Sprenger KG, Pfaendtner J. Essential slow degrees of freedom in protein-surface simulations: a metadynamics investigation. Biochem Biophys Res Commun. 2018;498(2):274–81.

    Article  CAS  Google Scholar 

  115. Zhang S, Liu Q, Cheng H, Gao F, Liu C, Teppen BJ. Thermodynamic mechanism and interfacial structure of kaolinite intercalation and surface modification by alkane surfactants with neutral and ionic head groups. J Phys Chem C Nanomater Interf. 2017;121(16):8824–31.

    Article  CAS  Google Scholar 

  116. Emami FS, Puddu V, Berry RJ, Varshney V, Patwardhan SV, Perry CC, Heinz H. Prediction of specific biomolecule adsorption on silica surfaces as a function of pH and particle size. Chem Mater. 2014;26(19):5725–34.

    Article  CAS  Google Scholar 

  117. Deighan M, Pfaendtner J. Exhaustively sampling peptide adsorption with metadynamics. Langmuir. 2013;29(25):7999–8009.

    Article  CAS  Google Scholar 

  118. Boughton AP, Andricioaei I, Chen Z. Surface orientation of Magainin 2: molecular dynamics simulation and sum frequency generation vibrational spectroscopic studies. Langmuir. 2010;26(20):16031–6.

    Article  CAS  Google Scholar 

  119. Lai C-T, Sun W, Palekar RU, Thaxton CS, Schatz GC. Molecular dynamics simulation and experimental studies of gold nanoparticle templated HDL-like nanoparticles for cholesterol metabolism therapeutics. ACS Appl Mater Interf. 2017;9(2):1247–54.

    Article  CAS  Google Scholar 

  120. Monti S, Barcaro G, Sementa L, Carravetta V, Ågren H. Dynamics and self-assembly of bio-functionalized gold nanoparticles in solution: Reactive molecular dynamics simulations. Nano Res. 2018;11(4):1757–67.

    Article  CAS  Google Scholar 

  121. Monti S, Barcaro G, Sementa L, Carravetta V, Ågren H. Characterization of the adsorption dynamics of trisodium citrate on gold in water solution. RSC Adv. 2017;7(78):49655–63.

    Article  CAS  Google Scholar 

  122. Monti S, Carravetta V, Ågren H. Decoration of gold nanoparticles with cysteine in solution: reactive molecular dynamics simulations. Nanoscale. 2016;8(26):12929–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank FONDECYT grant no. 1171155 and 11170223 as well as Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD); a Millennium Nucleus supported by the Iniciativa Cientifica Milenio of the Ministry of Economy, Development and Tourism (Chile).

Disclosures

All authors have read and approved this final version.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ariela Vergara-Jaque or Horacio Poblete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vergara-Jaque, A., Zúñiga, M., Poblete, H. (2019). Computational Methodologies for Exploring Nano-engineered Materials. In: Alarcon, E., Ahumada, M. (eds) Nanoengineering Materials for Biomedical Uses. Springer, Cham. https://doi.org/10.1007/978-3-030-31261-9_4

Download citation

Publish with us

Policies and ethics