Skip to main content

AI-Based Analysis of Selected Gait Parameters in Post-stroke Patients

  • Conference paper
  • First Online:
Image Processing and Communications (IP&C 2019)

Abstract

In this paper we propose solution of the problem of clinical gait analysis in post-stroke patients using advanced artificial intelligence approaches: fuzzy logic, neural networks, and fractal dimension. We focus on the stroke influence on gait pattern and features due to stroke is regarded one of the major causes of disability, including gait disorders. No doubt gait may be described by many parameters but it still needs advanced computational approach. Statistical analysis and simulation of gait features allow for relatively early detection of many limitations, selection of the proper therapeutic method, and assessment of the therapy progress. Results presented here are promising despite our approach needs for further studies toward clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awad, L.N., Reisman, D.S., Wright, T.R., Roos, M.A., Binder-Macleod, S.A.: Maximum walking speed is a key determinant of long distance walking function after stroke. Top. Stroke Rehabil. 21(6), 502–509 (2014). https://doi.org/10.1310/tsr2106-502

    Article  Google Scholar 

  2. Ayis, S., Wellwood, I., Rudd, A.G., McKevitt, C., Parkin, D., Wolfe, C.D.A.: Variations in health-related quality of life (HRQoL) and survival 1 year after stroke: five European population-based registers. BMJ Open 5(6) (2015). https://doi.org/10.1136/bmjopen-2014-007101

    Article  Google Scholar 

  3. Bhatnagar, P., Scarborough, P., Smeeton, N.C., Allender, S.: The incidence of all stroke and stroke subtype in the United Kingdom, 1985 to 2008: a systematic review. BMC Public Health 10(1), 539 (2010). https://doi.org/10.1186/1471-2458-10-539

    Article  Google Scholar 

  4. Gray, J., Lie, M.L.S., Murtagh, M.J., Ford, G.A., McMeekin, P., Thomson, R.G.: Health state descriptions to elicit stroke values: do they reflect patient experience of stroke? BMC Health Serv. Res. 14(1), 573 (2014). https://doi.org/10.1186/s12913-014-0573-6

    Article  Google Scholar 

  5. Heuschmann, P., Wiedmann, S., Wellwood, I., Rudd, A., Di Carlo, A., Bejot, Y., Ryglewicz, D., Rastenyte, D., Wolfe, C.: Three-month stroke outcome. Neurology 76(2), 159–165 (2011). https://doi.org/10.1212/WNL.0b013e318206ca1e

    Article  Google Scholar 

  6. Klimkiewicz, P., Kubsik, A., Woldańska-Okońska, M.: NDT-Bobath method used in the rehabilitation of patients with a history of ischemic stroke. Wiad. Lek. 65(2), 102–107 (2012)

    Google Scholar 

  7. Lozano-Ortiz, C.A., Muniz, A.M.S., Nadal, J.: Human gait classification after lower limb fracture using artificial neural networks and principal component analysis. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 1413–1416, August 2010

    Google Scholar 

  8. Mikołajewska, E.: Associations between results of post-stroke NDT-Bobath rehabilitation in gait parameters, ADL and hand functions. Adv. Clin. Exp. Med. 22(5), 731–738 (2013)

    Google Scholar 

  9. Mikołajewska, E.: The value of the NDT-Bobath method in post-stroke gait training. Adv. Clin. Exp. Med. 22(2), 261–272 (2013)

    Google Scholar 

  10. Mikołajewska, E., Prokopowicz, P., Mikolajewski, D.: Computational gait analysis using fuzzy logic for everyday clinical purposes – preliminary findings. Bio-Algorithms Med-Syst. 13(1) (2017). https://doi.org/10.1515/bams-2016-0023

  11. Muniz, A., Nadal, J.: Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait. Gait Posture 29(1), 31–35 (2009). https://doi.org/10.1016/j.gaitpost.2008.05.015

    Article  Google Scholar 

  12. Prokopowicz, P., Mikołajewska, E., Mikołajewski, D., Kotlarz, P.: Analysis of temporospatial gait parameters, pp. 289–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59614-3_17

    Chapter  Google Scholar 

  13. Prokopowicz, P., Mikołajewski, D., Mikołajewska, E., Kotlarz, P.: Fuzzy system as an assessment tool for analysis of the health-related quality of life for the people after stroke. In: Rutkowski, L., et al. (ed.) Artificial Intelligence and Soft Computing, pp. 710–721. Springer, Cham (2017)

    Google Scholar 

  14. Prokopowicz, P., Mikołajewski, D., Mikołajewska, E., Tyburek, K.: Modeling trends in the hierarchical fuzzy system for multi-criteria evaluation of medical data. In: Kacprzyk, L., et al. (ed.) Advances in Fuzzy Logic and Technology 2017, pp. 207–219. Springer, Cham (2018)

    Google Scholar 

  15. Richards, C.L., Malouin, F., Dean, C.: Gait in stroke: assessment and rehabilitation. Clin. Geriatr. Med. 15(4), 833–855 (1999)

    Article  Google Scholar 

  16. Roelker, S.A., Bowden, M.G., Kautz, S.A., Neptune, R.R.: Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: a review. Gait Posture 68, 6–14 (2019). https://doi.org/10.1016/j.gaitpost.2018.10.027

    Article  Google Scholar 

  17. Sheffler, L.R., Chae, J.: Hemiparetic gait. Phys. Med. Rehabil. Clin. N. Am. 26(4), 611–623 (2015). Stroke Rehabilitation

    Article  Google Scholar 

  18. Thrift, A.G., Howard, G., Cadilhac, D.A., Howard, V.J., Rothwell, P.M., Thayabaranathan, T., Feigin, V.L., Norrving, B., Donnan, G.A.: Global stroke statistics: an update of mortality data from countries using a broad code of cerebrovascular diseases. Int. J. Stroke 12(8), 796–801 (2017)

    Article  Google Scholar 

  19. Thrift, A.G., Thayabaranathan, T., Howard, G., Howard, V.J., Rothwell, P.M., Feigin, V.L., Norrving, B., Donnan, G.A., Cadilhac, D.A.: Global stroke statistics. Int. J. Stroke 12(1), 13–32 (2017). https://doi.org/10.1177/1747493016676285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prokopowicz Piotr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Piotr, P., Dariusz, M., Krzysztof, T., Emilia, M., Piotr, K. (2020). AI-Based Analysis of Selected Gait Parameters in Post-stroke Patients. In: Choraś, M., Choraś, R. (eds) Image Processing and Communications. IP&C 2019. Advances in Intelligent Systems and Computing, vol 1062. Springer, Cham. https://doi.org/10.1007/978-3-030-31254-1_24

Download citation

Publish with us

Policies and ethics