Skip to main content

Abstract

This chapter shows a method to approach the fractional-order derivatives of a chaotic oscillator in the frequency domain. It is shown that one can implement the approached transfer functions using amplifiers and passive circuit elements, and also one can use field-programmable analog arrays (FPAAs) to reduce mismatch when using discrete devices. Those implementations are described herein sketching block diagrams of the mathematical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Li, J. Yan, The synchronization of three fractional differential systems. Chaos Solitons Fractals 32(2), 751–757 (2007)

    Article  Google Scholar 

  2. H.Y. Jia, Q. Tao, Z.Q. Chen, Analysis and circuit design of a fractional-order Lorenz system with different fractional orders. Syst. Sci. Control Eng. Open Access J. 2(1), 745–750 (2014)

    Article  Google Scholar 

  3. C. Li, J. Yan, The synchronization of three fractional differential systems. Chaos Solitons Fractals 32(2), 751–757 (2007)

    Article  Google Scholar 

  4. H.Y. Jia, Q. Tao, Z.Q. Chen, Analysis and circuit design of a fractional-order Lorenz system with different fractional orders. Syst. Sci. Control Eng. Open Access J. 2(1), 745–750 (2014)

    Article  Google Scholar 

  5. A. Charef, H.H. Sun, Y.Y. Tsao, B. Onaral, Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)

    Article  MathSciNet  Google Scholar 

  6. L. Chen, W. Pan, R. Wu, K. Wang, Y. He, Generation and circuit implementation of fractional-order multi-scroll attractors. Chaos Solitons Fractals 85, 22–31 (2016)

    Article  MathSciNet  Google Scholar 

  7. S.-P. Wang, S.-K. Lao, H.-K. Chen, J.-H. Chen, S.-Y. Chen, Implementation of the fractional-order Chen–Lee system by electronic circuit. Int. J. Bifurcation Chaos 23(2), 1350030 (2013)

    Article  MathSciNet  Google Scholar 

  8. Y. Yu, H.-X. Li, The synchronization of fractional-order Rössler hyperchaotic systems. Phys. A Stat. Mech. Appl. 387(5–6), 1393–1403 (2008)

    Article  Google Scholar 

  9. C. Li, G. Chen, Chaos and hyperchaos in the fractional-order rössler equations. Phys. A Stat. Mech. Appl. 341, 55–61 (2004)

    Article  Google Scholar 

  10. I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91(3), 034101 (2003)

    Google Scholar 

  11. W.M. Ahmad, J.C. Sprott, Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16(2), 339–351 (2003)

    Article  Google Scholar 

  12. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198 (Elsevier, Amsterdam, 1998)

    MATH  Google Scholar 

  13. A. Djouambi, A. Charef, A. BesançOn, Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function. Int. J. Appl. Math. Comput. Sci. 17(4), 455–462 (2007)

    Article  MathSciNet  Google Scholar 

  14. C. Xiang-Rong, L. Chong-Xin, W. Fa-Qiang, Circuit realization of the fractional-order unified chaotic system. Chin. Phys. B 17(5), 1664 (2008)

    Article  Google Scholar 

  15. C. Muñiz-Montero, L.V. García-Jiménez, L.A. Sánchez-Gaspariano, C. Sánchez-López, V.R. González-Díaz, E. Tlelo-Cuautle, New alternatives for analog implementation of fractional-order integrators, differentiators and PID controllers based on integer-order integrators. Nonlinear Dyn. 90(1), 241–256 (2017)

    Article  MathSciNet  Google Scholar 

  16. C. Muñiz-Montero, L.A. Sánchez-Gaspariano, C. Sánchez-López, V.R. González-Díaz, E. Tlelo-Cuautle, On the electronic realizations of fractional-order phase-lead-lag compensators with OpAmps and FPAAs, in Fractional Order Control and Synchronization of Chaotic Systems (Springer, Berlin, 2017), pp. 131–164

    Book  Google Scholar 

  17. J. Lü, G. Chen, Generating multiscroll chaotic attractors: theories, methods and applications. Int. J. Bifurcation Chaos 16(4), 775–858 (2006)

    Article  MathSciNet  Google Scholar 

  18. T.J. Freeborn, B. Maundy, A.S. Elwakil, Field programmable analogue array implementation of fractional step filters. IET Circuits, Devices Syst. 4(6), 514–524 (2010)

    Article  Google Scholar 

  19. Anadigm, Dynamically Reconfigurable dpASP, 3rd Generation, AN231E04 Datasheet Rev 1.2 (2014). www.anadigm.com

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tlelo-Cuautle, E., Dalia Pano-Azucena, A., Guillén-Fernández, O., Silva-Juárez, A. (2020). Analog Implementations of Fractional-Order Chaotic Systems. In: Analog/Digital Implementation of Fractional Order Chaotic Circuits and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-31250-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31250-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31249-7

  • Online ISBN: 978-3-030-31250-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics