FPAA-Based Implementation and Behavioral Descriptions of Autonomous Chaotic Oscillators

  • Esteban Tlelo-Cuautle
  • Ana Dalia Pano-Azucena
  • Omar Guillén-Fernández
  • Alejandro Silva-Juárez


The implementation of fractional-order chaotic oscillators is quite similar to the implementation of integer-order ones. The main difference is the design of the integrator that can have fractional-order or integer-order. This chapter details the implementation of chaotic oscillators using FPAAs that are programmed using Anadigm Designer 2 electronic design automation (EDA) software, and a similar process is detailed and extended to fractional-order chaotic oscillators in Chap.  4. Also, this chapter details the behavioral descriptions of basic modules that are required to implement both integer and fractional-order chaotic oscillators. They are described under the very-high-speed-integrated-circuit hardware description language (VHDL), and those modules are used in Chap.  5 to synthesize different families of fractional-order chaotic oscillators.


FPAA FPGA VHDL programming Chaotic oscillator Fixed-point Binary truncation DAC 


  1. 1.
    R. Trejo-Guerra, E. Tlelo-Cuautle, V.H. Carbajal-Gómez, G. Rodriguez-Gomez, A survey on the integrated design of chaotic oscillators. Appl. Math. Comput. 219(10), 5113–5122 (2013)MathSciNetzbMATHGoogle Scholar
  2. 2.
    V.H. Carbajal-Gomez, E. Tlelo-Cuautle, J.M. Muñoz-Pacheco, L.G. de la Fraga, C. Sanchez-Lopez, F.V. Fernandez-Fernandez, Optimization and CMOS design of chaotic oscillators robust to PVT variations. Integration 65, 32–42 (2018)CrossRefGoogle Scholar
  3. 3.
    W.M. Ahmad, J.C. Sprott, Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16(2), 339–351 (2003)CrossRefGoogle Scholar
  4. 4.
    C. Muñiz-Montero, L.V. García-Jiménez, L.A. Sánchez-Gaspariano, C. Sánchez-López, V.R. González-Díaz, E. Tlelo-Cuautle, New alternatives for analog implementation of fractional-order integrators, differentiators and PID controllers based on integer-order integrators. Nonlinear Dynam. 90(1), 241–256 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    J.-M. Garcia-Ortega, E. Tlelo-Cuautle, C. Sanchez-Lopez, Design of current-mode Gm-C filters from the transformation of opamp-RC filters. J. Appl. Sci. 7(9), 1321–1326 (2007)CrossRefGoogle Scholar
  6. 6.
    C. Muñiz-Montero, L.A. Sánchez-Gaspariano, C. Sánchez-López, V.R. González-Díaz, E. Tlelo-Cuautle, On the electronic realizations of fractional-order phase-lead-lag compensators with OpAmps and FPAAs, in Fractional Order Control and Synchronization of Chaotic Systems (Springer, Berlin, 2017), pp. 131–164CrossRefGoogle Scholar
  7. 7.
    F. Rahma et al., Analog programmable electronic circuit-based chaotic Lorenz system. Basrah J. Eng. Sci. 14(1), 39–47 (2014)Google Scholar
  8. 8.
    Anadigm, Dynamically Reconfigurable dpASP, 3rd Generation, AN231E04 Datasheet Rev 1.2 (2014).
  9. 9.
    Anadigmdesigner2 user manual (2014).
  10. 10.
    O. Guillén-Fernández, A. Meléndez-Cano, E. Tlelo-Cuautle, J.C. Núñez-Pérez, J. de Jesus Rangel-Magdaleno, On the synchronization techniques of chaotic oscillators and their FPGA-based implementation for secure image transmission. PloS One 14(2), e0209618 (2019)CrossRefGoogle Scholar
  11. 11.
    E. Tlelo-Cuautle, J.J. Rangel-Magdaleno, A.D. Pano-Azucena, P.J. Obeso-Rodelo, J.C. Nuñez-Perez, FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27(1–3), 66–80 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    E. Tlelo-Cuautle, A.D. Pano-Azucena, J.J. Rangel-Magdaleno, V.H. Carbajal-Gomez, G. Rodriguez-Gomez, Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs. Nonlinear Dynam. 85(4), 2143–2157 (2016)CrossRefGoogle Scholar
  13. 13.
    E. Tlelo-Cuautle, L.G. de la Fraga, J. Rangel-Magdaleno, Engineering Applications of FPGAs (Springer, Berlin, 2016)CrossRefGoogle Scholar
  14. 14.
    G. Cai, Z. Tan, Chaos synchronization of a new chaotic system via nonlinear control. J. Uncertain Syst. 1(3), 235–240 (2007)Google Scholar
  15. 15.
    A. Kiani-B, K. Fallahi, N. Pariz, H. Leung, A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Commun. Nonlinear Sci. Numer. Simul. 14(3), 863–879 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)CrossRefGoogle Scholar
  17. 17.
    R.J. Field et al., Chaos in Chemistry and Biochemistry (World Scientific, Singapore, 1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Esteban Tlelo-Cuautle
    • 1
  • Ana Dalia Pano-Azucena
    • 1
  • Omar Guillén-Fernández
    • 1
  • Alejandro Silva-Juárez
    • 1
  1. 1.INAOETonantzintlaMexico

Personalised recommendations