Analog/Digital Implementation of Fractional Order Chaotic Circuits and Applications pp 1-40 | Cite as
Integer and Fractional-Order Chaotic Circuits and Systems
Chapter
First Online:
- 1 Citations
- 210 Downloads
Abstract
This introductory chapter summarizes recent advances on the simulation and electronic implementations of integer and fractional-order chaotic oscillators. It highlights the mathematical modeling and special methods to perform time simulation of chaotic systems and the associated issues for electronic realization.
Keywords
Chaos Equilibrium point Eigenvalue Numerical method Multistep Lyapunov exponent Kaplan-Yorke dimension Fractional calculus Fractional-order chaotic oscillatorReferences
- 1.I. Petráš, Fractional-Order Chaotic Systems (Springer, Berlin, 2011), pp. 103–184CrossRefGoogle Scholar
- 2.V.-T. Pham, S. Vaidyanathan, C. Volos, T. Kapitaniak, Nonlinear Dynamical Systems with Self-excited and Hidden Attractors, vol. 133 (Springer, Berlin, 2018)zbMATHCrossRefGoogle Scholar
- 3.H.K. Khalil, Nonlinear Systems (Prentice Hall, Englewood Cliffs, 1996)Google Scholar
- 4.P.A. Cook, Nonlinear Dynamical Systems (Prentice Hall, Englewood Cliffs, 1994)Google Scholar
- 5.H. Degn, A.V. Holden, L.F. Olsen, Chaos in Biological Systems, vol. 138 (Springer, New York, 2013)Google Scholar
- 6.V.H. Carbajal-Gomez, E. Tlelo-Cuautle, J.M. Muñoz-Pacheco, L.G. de la Fraga, C. Sanchez-Lopez, F.V. Fernandez-Fernandez, Optimization and CMOS design of chaotic oscillators robust to PVT variations. Integration 65, 32–42 (2018)CrossRefGoogle Scholar
- 7.A.D. Pano-Azucena, J. de Jesus Rangel-Magdaleno, E. Tlelo-Cuautle, A. de Jesus Quintas-Valles, Arduino-based chaotic secure communication system using multi-directional multi-scroll chaotic oscillators. Nonlinear Dynam. 87(4), 2203–2217 (2017)CrossRefGoogle Scholar
- 8.A.D. Pano-Azucena, E. Tlelo-Cuautle, J.M. Muñoz-Pacheco, L.G. de la Fraga, FPGA-based implementation of different families of fractional-order chaotic oscillators applying Grünwald–Letnikov method. Commun. Nonlinear Sci. Numer. Simul. 72, 516–527 (2019)MathSciNetCrossRefGoogle Scholar
- 9.A.A. Rezk, A.H. Madian, A.G. Radwan, A.M. Soliman, Reconfigurable chaotic pseudo random number generator based on FPGA. AEU-Int. J. Electron. Commun. 98, 174–180 (2019)CrossRefGoogle Scholar
- 10.O. Guillén-Fernández, A. Meléndez-Cano, E. Tlelo-Cuautle, J.C. Núñez-Pérez, J. de Jesus Rangel-Magdaleno, On the synchronization techniques of chaotic oscillators and their FPGA-based implementation for secure image transmission. PloS One 14(2), e0209618 (2019)CrossRefGoogle Scholar
- 11.C.K. Volos, D.A. Prousalis, S. Vaidyanathan, V.-T. Pham, J.M. Munoz-Pacheco, E. Tlelo-Cuautle, Kinematic control of a robot by using a non-autonomous chaotic system, in Advances and Applications in Nonlinear Control Systems (Springer, Berlin, 2016), pp. 1–17zbMATHGoogle Scholar
- 12.T.S. Parker, L. Chua, Practical Numerical Algorithms for Chaotic Systems (Springer, New York, 2012)zbMATHGoogle Scholar
- 13.E. Tlelo-Cuautle, L.G. de la Fraga, J. Rangel-Magdaleno, Engineering Applications of FPGAs (Springer, Berlin, 2016)CrossRefGoogle Scholar
- 14.J.D. Lambert, Computational Methods in Ordinary Differential Equations (Wiley, Hoboken, 1973)zbMATHGoogle Scholar
- 15.R.M. Corless, What good are numerical simulations of chaotic dynamical systems? Comput. Math. Appl. 28(10–12), 107–121 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.C. Varsakelis, P. Anagnostidis, On the susceptibility of numerical methods to computational chaos and superstability. Commun. Nonlinear Sci. Numer. Simul. 33, 118–132 (2016)MathSciNetCrossRefGoogle Scholar
- 17.E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)zbMATHCrossRefGoogle Scholar
- 18.O.E. Rössler, An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)zbMATHCrossRefGoogle Scholar
- 19.G. Chen, T. Ueta, Yet another chaotic attractor. Int. J. Bifur. Chaos 9(7), 1465–1466 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.J. Lü, G. Chen, S. Zhang, Dynamical analysis of a new chaotic attractor. Int. J. Bifur. Chaos 12(5), 1001–1015 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 21.C. Liu, T. Liu, L. Liu, K. Liu, A new chaotic attractor. Chaos Solitons Fractals 22(5), 1031–1038 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.M.A. Zidan, A.G. Radwan, K.N. Salama, Controllable v-shape multiscroll butterfly attractor: system and circuit implementation. Int. J. Bifur. Chaos 22(6), 1250143 (2012)zbMATHCrossRefGoogle Scholar
- 23.J.C. Sprott, Some simple chaotic flows. Phys. Rev. E 50(2), R647 (1994)MathSciNetCrossRefGoogle Scholar
- 24.M.W. Hirsch, S. Smale, R.L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos (Academic, Cambridge, 2012)zbMATHGoogle Scholar
- 25.A.D. Pano-Azucena, E. Tlelo-Cuautle, G. Rodriguez-Gomez, L.G. De la Fraga, FPGA-based implementation of chaotic oscillators by applying the numerical method based on trigonometric polynomials. AIP Adv. 8(7), 075217 (2018)CrossRefGoogle Scholar
- 26.D. Schleicher, Hausdorff dimension, its properties, and its surprises. Am. Math. Mon. 114(6), 509–528 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 27.A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenomena 16(3), 285–317 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
- 28.V.H. Carbajal-Gómez, E. Tlelo-Cuautle, F.V. Fernández, L.G. de la Fraga, C. Sánchez-López, Maximizing Lyapunov exponents in a chaotic oscillator by applying differential evolution. Int. J. Nonlinear Sci. Numer. Simul. 15(1), 11–17 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.A. Silva-Juarez, G. Rodriguez-Gomez, L.G. de la Fraga, O. Guillen-Fernandez, E. Tlelo-Cuautle, Optimizing the Kaplan–Yorke dimension of chaotic oscillators applying de and PSO. Technologies 7(2), 38 (2019)CrossRefGoogle Scholar
- 30.G. Cardano, T.R. Witmer, Ars Magna or the Rules of Algebra. Dover Books on Advanced Mathematics (Dover, New York, 1968)Google Scholar
- 31.I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Springer, New York, 2011)zbMATHCrossRefGoogle Scholar
- 32.A. Oustaloup, Fractional order sinusoidal oscillators: optimization and their use in highly linear FM modulation. IEEE Trans. Circuits Syst. 28(10), 1007–1009 (1981)CrossRefGoogle Scholar
- 33.A. Arenta, R. Caponetto, L. Fortuna, D. Porto, Nonlinear Non-integer Order Circuits and Systems. World Scientific Series on Nonlinear Science, Series A, vol. 38 (World Scientific, Singapore, 2002)Google Scholar
- 34.W.M. Ahmad, J.C. Sprott, Chaos in fractional-order autonomous nonlinear systems. Chaos, Solitons Fractals 16(2), 339–351 (2003)zbMATHCrossRefGoogle Scholar
- 35.A.T. Azar, A.G. Radwan, S. Vaidyanathan, Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications (Academic, Cambridge, 2018)Google Scholar
- 36.K. Rajagopal, S. Çiçek, A.J.M. Khalaf, V.-T. Pham, S. Jafari, A. Karthikeyan, P. Duraisamy, A novel class of chaotic flows with infinite equilibriums and their application in chaos-based communication design using DCSK. Z. Naturforsch. A 73(7), 609–617 (2018)CrossRefGoogle Scholar
- 37.C.K. Volos, S. Jafari, J. Kengne, J.M. Munoz-Pacheco, K. Rajagopal, Nonlinear Dynamics and Entropy of Complex Systems with Hidden and Self-excited Attractors (MDPI, Basel, 2019)Google Scholar
- 38.D. Baleanu, J.A.T. Machado, A.C.J. Luo, Fractional Dynamics and Control (Springer, New York, 2011)Google Scholar
- 39.C. Li, X. Liao, J. Yu, Synchronization of fractional order chaotic systems. Phys. Rev. E 68(6), 067203 (2003)Google Scholar
- 40.R. Martínez-Guerra, C.A. Pérez-Pinacho, Advances in Synchronization of Coupled Fractional Order Systems: Fundamentals and Methods (Springer, Berlin, 2018)zbMATHCrossRefGoogle Scholar
- 41.A.T. Azar, S. Vaidyanathan, A. Ouannas, Fractional Order Control and Synchronization of Chaotic Systems, vol. 688 (Springer, Berlin, 2017)zbMATHCrossRefGoogle Scholar
- 42.A. Tepljakov, Fractional-Order Modeling and Control of Dynamic Systems (Springer, Berlin, 2017)zbMATHCrossRefGoogle Scholar
- 43.K. Rajagopal, S. Jafari, S. Kacar, A. Karthikeyan, A. Akgül, Fractional order simple chaotic oscillator with saturable reactors and its engineering applications. Inf. Technol. Control 48(1), 115–128 (2019)Google Scholar
- 44.L.F. Ávalos-Ruiz, C.J. Zúñiga-Aguilar, J.F. Gómez-Aguilar, R.F. Escobar-Jiménez, H.M. Romero-Ugalde, FPGA implementation and control of chaotic systems involving the variable-order fractional operator with Mittag–Leffler law. Chaos Solitons Fractals 115, 177–189 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 45.K. Rajagopal, F. Nazarimehr, A. Karthikeyan, A. Srinivasan, S. Jafari, Fractional order synchronous reluctance motor: analysis, chaos control and FPGA implementation. Asian J. Control 20(5), 1979–1993 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 46.Z. Wei, A. Akgul, U.E. Kocamaz, I. Moroz, W. Zhang, Control, electronic circuit application and fractional-order analysis of hidden chaotic attractors in the self-exciting homopolar disc dynamo. Chaos Solitons Fractals 111, 157–168 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 47.E.-Z. Dong, Z. Wang, X. Yu, Z.-Q. Chen, Z.-H. Wang, Topological horseshoe analysis and field-programmable gate array implementation of a fractional-order four-wing chaotic attractor. Chin. Phys. B 27(1), 010503 (2018)CrossRefGoogle Scholar
- 48.K. Rajagopal, G. Laarem, A. Karthikeyan, A. Srinivasan, FPGA implementation of adaptive sliding mode control and genetically optimized PID control for fractional-order induction motor system with uncertain load. Adv. Differ. Equ. 2017(1), 273 (2017)Google Scholar
- 49.K. Rajagopal, A. Karthikeyan, P. Duraisamy, Bifurcation analysis and chaos control of a fractional order portal frame with nonideal loading using adaptive sliding mode control. Shock. Vib. 2017, Article ID 2321060, 14 (2017)Google Scholar
- 50.D.K. Shah, R.B. Chaurasiya, V.A. Vyawahare, K. Pichhode, M.D. Patil, FPGA implementation of fractional-order chaotic systems. AEU-Int. J. Electron. Commun. 78, 245–257 (2017)CrossRefGoogle Scholar
- 51.A. Karthikeyan, K. Rajagopal, Chaos control in fractional order smart grid with adaptive sliding mode control and genetically optimized PID control and its FPGA implementation. Complexity 2017, Article ID 3815146, 18 (2017)Google Scholar
- 52.K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, vol. 111 (Elsevier, Amsterdam, 1974)zbMATHGoogle Scholar
- 53.S.S. Ray, Fractional Calculus with Applications for Nuclear Reactor Dynamics (CRC Press, Boca Raton, 2015)CrossRefGoogle Scholar
- 54.O.M. Duarte, Fractional Calculus for Scientists and Engineers (Springer, Berlin, 2011), 114 pp.zbMATHGoogle Scholar
- 55.F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (World Scientific, Singapore, 2010)zbMATHCrossRefGoogle Scholar
- 56.V.E. Tarasov, Fractional Dynamics; Applications of the Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, Berlin, 2010), 522 pp.zbMATHGoogle Scholar
- 57.D. Baleanu, Z.B. Günvec, M.J.A. Tenreiro, New Trends in Nanotechnology and Fractional Calculus Applications (Springer, Berlin, 2010), 544 pp.CrossRefGoogle Scholar
- 58.C.-B. Fu, A.-H. Tian, Y.-C. Li, H.-T. Yau, Fractional order chaos synchronization for real-time intelligent diagnosis of islanding in solar power grid systems. Energies 11(5), 1183 (2018)CrossRefGoogle Scholar
- 59.Z. Gan, X. Chai, K. Yuan, Y. Lu, A novel image encryption algorithm based on LFT based S-boxes and chaos. Multimed. Tools Appl. 77(7), 8759–8783 (2018)CrossRefGoogle Scholar
- 60.V.P. Latha, F.A. Rihan, R. Rakkiyappan, G. Velmurugan, A fractional-order model for Ebola virus infection with delayed immune response on heterogeneous complex networks. J. Comput. Appl. Math. 339, 134–146 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 61.X. Lin, S. Zhou, H. Li, H. Tang, Y. Qi, Rhythm oscillation in fractional-order relaxation oscillator and its application in image enhancement. J. Comput. Appl. Math. 339, 69–84 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 62.K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, Hoboken, 1993)zbMATHGoogle Scholar
- 63.I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering (Elsevier, Amsterdam, 1999)Google Scholar
- 64.M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967)CrossRefGoogle Scholar
- 65.L. Dorcak, J. Prokop, I. Kostial, Investigation of the properties of fractional-order dynamical systems, in Proceedings of 11th International Conference on Process Control (1994), pp. 19–20Google Scholar
- 66.I. Pan, S. Das, Intelligent Fractional Order Systems and Control: An Introduction, vol. 438 (Springer, Berlin, 2012)zbMATHGoogle Scholar
- 67.W. Deng, J. Lü, Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system. Phys. Lett. A 369(5–6), 438–443 (2007)zbMATHCrossRefGoogle Scholar
- 68.N.J. Ford, A.C. Simpson, The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26(4), 333–346 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 69.Y. Chen, I. Petras, D. Xue, Fractional order control - a tutorial, in 2009 American Control Conference (2009), pp. 1397–1411Google Scholar
- 70.I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their applications, vol. 198 (Elsevier, Amsterdam, 1998)zbMATHGoogle Scholar
- 71.D. Cafagna, G. Grassi, On the simplest fractional-order memristor-based chaotic system. Nonlinear Dynam. 70(2), 1185–1197 (2012)MathSciNetCrossRefGoogle Scholar
- 72.R. Garrappa, Short tutorial: solving fractional differential equations by Matlab codes. Department of Mathematics, University of Bari (2014)Google Scholar
- 73.M.-F. Danca, N. Kuznetsov, Matlab code for Lyapunov exponents of fractional-order systems. Int. J. Bifurcation Chaos 28(5), 1850067 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 74.K. Diethelm, N.J. Ford, A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam. 29(1–4), 3–22 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 75.J.M. Muñoz-Pacheco, E. Zambrano-Serrano, O. Félix-Beltrán, L.C. Gómez-Pavón, A. Luis-Ramos, Synchronization of PWL function-based 2d and 3d multi-scroll chaotic systems. Nonlinear Dynam. 70(2), 1633–1643 (2012)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2020