Skip to main content

Analyzing the Vulnerabilities Introduced by DDoS Mitigation Techniques for Software-Defined Networks

  • Conference paper
  • First Online:
National Cyber Summit (NCS) Research Track (NCS 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1055))

Included in the following conference series:

Abstract

Software defined networking facilitates better network management by decoupling the data and control planes of legacy routers and switches and is widely adopted in data center and production networks. The decoupling of control and data planes facilitates more optimal network management and deployment of elaborate security mechanisms, but also introduces new vulnerabilities which could be exploited using distributed denial of service (DDoS) attacks. In this paper, we identify several protocol vulnerabilities and resource limitations that are exploited by DDoS attacks. We also analyze the vulnerabilities introduced by several DDoS mitigation techniques, discuss attacks that exploit them, and quantify their impact on the network performance using experiments on a 5-node testbed. We show an approach to mitigate such vulnerabilities while minimizing the introduction of any exploitable vulnerabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008). http://doi.acm.org/10.1145/1355734.1355746

    Article  Google Scholar 

  2. Kreutz, D., Ramos, F.M., Verissimo, P., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

    Article  Google Scholar 

  3. Garber, L.: Denial-of-service attacks rip the internet. Computer 33(4), 12–17 (2000)

    Article  Google Scholar 

  4. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: mirai and other botnets. Computer 50(7), 80–84 (2017)

    Article  Google Scholar 

  5. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor. 15(4), 2046–2069 (2013)

    Article  Google Scholar 

  6. Chang, R.K.: Defending against flooding-based distributed denial-of-service attacks: a tutorial. IEEE Commun. Mag. 40(10), 42–51 (2002)

    Article  Google Scholar 

  7. Mirkovic, J., Reiher, P.: A taxonomy of DDoS attack and DDoS defense mechanisms. ACM SIGCOMM Comput. Commun. Rev. 34(2), 39–53 (2004)

    Article  Google Scholar 

  8. Blankenship, J.: DDoS mitigation solutions, Q4 2017. In: The Forrester Wave\(^{TM}\), December 2017

    Google Scholar 

  9. Akhunzada, A., Ahmed, E., Gani, A., Khan, M.K., Imran, M., Guizani, S.: Securing software defined networks: taxonomy, requirements, and open issues. IEEE Commun. Mag. 53(4), 36–44 (2015)

    Article  Google Scholar 

  10. Alsmadi, I., Xu, D.: Security of software defined networks: a survey. Comput. Secur. 53, 79–108 (2015)

    Article  Google Scholar 

  11. Zhang, P., Wang, H., Hu, C., Lin, C.: On denial of service attacks in software defined networks. IEEE Netw. 30(6), 28–33 (2016)

    Article  Google Scholar 

  12. Yan, Q., Yu, F.R., Gong, Q., Li, J.: Software-defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud computing environments: a survey, some research issues, and challenges. IEEE Commun. Surv. Tutor. 18(1), 602–622 (2016)

    Article  Google Scholar 

  13. Shin, S., Yegneswaran, V., Porras, P., Gu, G.: AVANT-GUARD: scalable and vigilant switch flow management in software-defined networks. In: Proceedings of the ACM Conference on Computer & Communications Security, pp. 413–424 (2013)

    Google Scholar 

  14. Postel, J.: Transmission control protocol. STD 7, RFC Editor, September 1981. http://www.rfc-editor.org/rfc/rfc793.txt

  15. Ambrosin, M., Conti, M., Gaspari, F.D., Poovendran, R.: Lineswitch: tackling control plane saturation attacks in software-defined networking. IEEE/ACM Trans. Netw. 25(2), 1206–1219 (2017)

    Article  Google Scholar 

  16. Chen, K., Junuthula, A.R., Siddhrau, I.K., Xu, Y., Chao, H.J.: SDNShield: towards more comprehensive defense against DDoS attacks on SDN control plane. In: IEEE Conference on Communications and Network Security (CNS), pp. 28–36. IEEE (2016)

    Google Scholar 

  17. Mohammadi, R., Javidan, R., Conti, M.: Slicots: an SDN-based lightweight countermeasure for TCP SYN flooding attacks. IEEE Trans. Netw. Serv. Manag. 14(2), 487–497 (2017)

    Article  Google Scholar 

  18. Fichera, S., Galluccio, L., Grancagnolo, S.C., Morabito, G., Palazzo, S.: OPERETTA: an openflow-based remedy to mitigate TCP synflood attacks against web servers. Comput. Netw. 92, 89–100 (2015)

    Article  Google Scholar 

  19. Sahay, R., Blanc, G., Zhang, Z., Debar, H.: ArOMA: an SDN based autonomic DDoS mitigation framework. Comput. Secur. 70, 482–499 (2017)

    Article  Google Scholar 

  20. Specification, O.S.: Version 1.0. 0 (wire protocol 0x01). Open Networking Foundation (2009). https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf

  21. Schabel, L.: Working with synproxy. https://github.com/firehol/firehol/wiki/Working-with-SYNPROXY

  22. Bernstein, D.J.: Syn cookies. https://cr.yp.to/syncookies.html

  23. Cisco, Inc.: Configuring Firewall TCP SYN Cookie, chap. Cisco ASR 1000 Series Aggregation Services Routers. Cisco, Inc., August 2018

    Google Scholar 

  24. Cisco Systems, Inc.: Implementing Open Flow Agent, chap. Cisco ASR 9000 Series Aggregation Services Router System Management Configuration Guide, Release 5.1.x. Cisco Systems, Inc., October 2017

    Google Scholar 

  25. Juniper Inc.: OpenFlow Support on Juniper Networks Devices, chap. Juniper, Inc., Junos OS (2018)

    Google Scholar 

  26. Juniper Networks, Inc.: Junos Space Network Management Platform Hardening, chap. Junos Space Service Automation, Release 16.1. Juniper Networks, Inc., August 2017

    Google Scholar 

  27. CVE details, May 2019. https://www.cvedetails.com/vulnerability-list/vendor_id-13628/product_id-36893/Opendaylight-Openflow.html

  28. NIST: Cve-2018-1000155 detail. https://nvd.nist.gov/vuln/detail/CVE-2018-1000155. Accessed May 2019

  29. Bifulco, R., Cui, H., Karame, G.O., Klaedtke, F.: Fingerprinting software-defined networks. In: 2015 IEEE 23rd International Conference on Network Protocols (ICNP), pp. 453–459. IEEE (2015)

    Google Scholar 

  30. cURL client. https://github.com/php-http/curl-client

  31. BoNeSi: the DDoS botnet simulator. https://github.com/Markus-Go/bonesi

  32. Hennesy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 6th edn. Morgan Kaufmann Publishers, Burlington (2017)

    Google Scholar 

  33. Openflow. https://github.com/mininet/openflow

  34. Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J., Wang, A., Stringer, J., Shelar, P., et al.: The design and implementation of Open vSwitch. In: USENIX Symposium on Networked Systems Design and Implementation (NSDI), pp. 117–130 (2015)

    Google Scholar 

  35. Wang, H., Zhang, D., Shin, K.G.: Detecting SYN flooding attacks. In: Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1530–1539. IEEE (2002)

    Google Scholar 

  36. Wang, B., Zheng, Y., Lou, W., Hou, Y.T.: DDoS attack protection in the era of cloud computing and software-defined networking. Comput. Netw. 81, 308–319 (2015)

    Article  Google Scholar 

  37. Shang, G., Zhe, P., Bin, X., Aiqun, H., Kui, R.: FloodDefender: protecting data and control plane resources under SDN-aimed DoS attacks. In: IEEE INFOCOM 2017-IEEE Conference on Computer Communications, pp. 1–9. IEEE (2017)

    Google Scholar 

  38. Sonchack, J., Smith, J.M., Aviv, A.J., Keller, E.: Enabling practical software-defined networking security applications with OFX. In: NDSS, vol. 16, pp. 1–15 (2016)

    Google Scholar 

  39. Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., Gu, G.: A security enforcement kernel for OpenFlow networks. In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks, pp. 121–126. ACM (2012)

    Google Scholar 

  40. Hu, H., Han, W., Ahn, G.J., Zhao, Z.: FLOWGUARD: building robust firewalls for software-defined networks. In: Proceedings of the Third Workshop on Hot Topics in Software Defined Networking, pp. 97–102. ACM (2014)

    Google Scholar 

  41. Wang, H., Xu, L., Gu, G.: Floodguard: a DoS attack prevention extension in software-defined networks. In: Proceedings of the 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2015, pp. 239–250. IEEE Computer Society, Washington (2015). http://dx.doi.org/10.1109/DSN.2015.27

  42. Shin, S.W., Porras, P., Yegneswara, V., Fong, M., Gu, G., Tyson, M.: Fresco: modular composable security services for software-defined networks. In: 20th Annual Network & Distributed System Security Symposium, NDSS (2013)

    Google Scholar 

  43. Mousavi, S.M., St-Hilaire, M.: Early detection of DDoS attacks against SDN controllers. In: 2015 International Conference on Computing, Networking and Communications (ICNC), pp. 77–81. IEEE (2015)

    Google Scholar 

  44. Bhuyan, M.H., Bhattacharyya, D., Kalita, J.K.: An empirical evaluation of information metrics for low-rate and high-rate DDoS attack detection. Pattern Recognit. Lett. 51, 1–7 (2015)

    Article  Google Scholar 

  45. Sahoo, K.S., Puthal, D., Tiwary, M., Rodrigues, J.J., Sahoo, B., Dash, R.: An early detection of low rate DDoS attack to SDN based data center networks using information distance metrics. Futur. Gener. Comput. Syst. 89, 685–697 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

This research is partially supported by grant H98230-18-1-0335 from the National Security Agency, U.S.A. The claims and opinions expressed in this document are solely those of the authors and do not represent those by the U.S. government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra V. Boppana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boppana, R.V., Chaganti, R., Vedula, V. (2020). Analyzing the Vulnerabilities Introduced by DDoS Mitigation Techniques for Software-Defined Networks. In: Choo, KK., Morris, T., Peterson, G. (eds) National Cyber Summit (NCS) Research Track. NCS 2019. Advances in Intelligent Systems and Computing, vol 1055. Springer, Cham. https://doi.org/10.1007/978-3-030-31239-8_14

Download citation

Publish with us

Policies and ethics