Skip to main content
Book cover

Stem Cells pp 239–259Cite as

Epidermal Stem Cells

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1201))

Abstract

A multilayered epithelium to fulfil its function must be replaced throughout the lifespan. This is possible due to the presence of multipotent, self-renewing epidermal stem cells that give rise to differentiated cell lineages: keratinocytes, hairs, as well as sebocytes. Till now the molecular mechanisms responsible for stem cell quiescent, proliferation, and differentiation have not been fully established. It is suggested that epidermal stem cells might change their fate, both due to intrinsic events and as a result of niche-dependent extrinsic signals; however other yet unknown factors may also be involved in this process. Given the increasing excitement evoked by self-renewing epidermal stem cells, as one of the sources of adult stem cells, it seems important to reveal the mechanisms that govern their fate. In this chapter, we describe recent advances in the characterisation of the epidermal stem cells and their compartments. Furthermore, we focus on the interplay between epidermal stem cells and extrinsic signals and their role in quiescence, proliferation, and differentiation of appropriate epidermal stem cell lineages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature

  1. Choi H-R et al (2015) Niche interactions in epidermal stem cells. World J Stem Cells 7(2):495

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chacón-Martínez CA, Koester J, Wickström SA (2018) Signaling in the stem cell niche: regulating cell fate, function and plasticity. Development 145(15):dev165399

    Article  PubMed  CAS  Google Scholar 

  3. Orioli D, Dellambra E (2018) Epigenetic regulation of skin cells in natural aging and premature aging diseases. Cell 7(12):268

    Article  CAS  Google Scholar 

  4. Haensel D, McNeil MA, Dai X (2018) Ex vivo imaging and genetic manipulation of mouse hair follicle bulge stem cells. In: Skin stem cells. Humana Press, New York, pp 15–29

    Chapter  Google Scholar 

  5. Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311(5769):1880–1885

    Article  CAS  PubMed  Google Scholar 

  6. Gonzales KAU, Fuchs E (2017) Skin and its regenerative powers: an alliance between stem cells and their niche. Dev Cell 43(4):387–401

    Article  CAS  PubMed  Google Scholar 

  7. Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437(7056):275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams SE et al (2011) Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470(7334):353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Watt FM, Hogan BLM (2000) Out of Eden: stem cells and their niches. Science 287(5457):1427–1430

    Article  CAS  PubMed  Google Scholar 

  10. Inaba M, Yamashita YM (2012) Asymmetric stem cell division: precision for robustness. Cell Stem Cell 11(4):461–469

    Article  CAS  PubMed  Google Scholar 

  11. Hsu Y-C, Pasolli HA, Fuchs E (2011) Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hsu Y-C, Li L, Fuchs E (2014) Emerging interactions between skin stem cells and their niches. Nat Med 20(8):847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778

    Article  CAS  PubMed  Google Scholar 

  15. Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441(7097):1068

    Article  CAS  PubMed  Google Scholar 

  16. Kaur P, Li A (2000) Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells. J Investig Dermatol 114(3):413–420

    Article  CAS  PubMed  Google Scholar 

  17. Seery JP, Watt FM (2000) Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium. Curr Biol 10(22):1447–1450

    Article  CAS  PubMed  Google Scholar 

  18. Janes SM, Lowell S, Hutter C (2002) Epidermal stem cells. J Pathol 197(4):479–491

    Article  PubMed  Google Scholar 

  19. Rendl M, Lewis L, Fuchs E (2005) Molecular dissection of mesenchymal–epithelial interactions in the hair follicle. PLoS Biol 3(11):e331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lewis DA et al (2010) The IGF-1/IGF-1R signaling axis in the skin: a new role for the dermis in aging-associated skin cancer. Oncogene 29(10):1475

    Article  CAS  PubMed  Google Scholar 

  21. Sadagurski M et al (2006) Insulin-like growth factor 1 receptor signaling regulates skin development and inhibits skin keratinocyte differentiation. Mol Cell Biol 26(7):2675–2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Potten CS (1974) The epidermal proliferative unit: the possible role of the central basal cell. Cell Prolif 7(1):77–88

    Article  CAS  Google Scholar 

  23. Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73(4):713–724

    Article  CAS  PubMed  Google Scholar 

  24. Li A, Simmons PJ, Kaur P (1998) Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci 95(7):3902–3907

    Article  CAS  PubMed  Google Scholar 

  25. Lowell S et al (2000) Stimulation of human epidermal differentiation by Delta–Notch signalling at the boundaries of stem-cell clusters. Curr Biol 10(9):491–500

    Article  CAS  PubMed  Google Scholar 

  26. Ohyama M et al (2006) Characterization and isolation of stem cell–enriched human hair follicle bulge cells. J Clin Invest 116(1):249–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Legg J et al (2003) Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis. Development 130(24):6049–6063

    Article  CAS  PubMed  Google Scholar 

  28. Jensen KB, Watt FM (2006) Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc Natl Acad Sci 103(32):11958–11963

    Article  CAS  PubMed  Google Scholar 

  29. Claudinot S et al (2005) Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc Natl Acad Sci 102(41):14677–14682

    Article  CAS  PubMed  Google Scholar 

  30. Tiede S et al (2007) Hair follicle stem cells: walking the maze. Eur J Cell Biol 86(7):355–376

    Article  CAS  PubMed  Google Scholar 

  31. Ojeh N et al (2015) Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Sci 16(10):25476–25501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li A et al (2004) Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J Clin Invest 113(3):390–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Niemann C, Watt FM (2002) Designer skin: lineage commitment in postnatal epidermis. Trends Cell Biol 12(4):185–192

    Article  CAS  PubMed  Google Scholar 

  34. Guo L, Yu Q-C, Fuchs E (1993) Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice. EMBO J 12(3):973–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vassar R, Fuchs E (1991) Transgenic mice provide new insights into the role of TGF-alpha during epidermal development and differentiation. Genes Dev 5(5):714–727

    Article  CAS  PubMed  Google Scholar 

  36. Ferby I et al (2006) Mig6 is a negative regulator of EGF receptor–mediated skin morphogenesis and tumor formation. Nat Med 12(5):568

    Article  CAS  PubMed  Google Scholar 

  37. Raghavan S et al (2000) Conditional ablation of β1 integrin in skin: severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J Cell Biol 150(5):1149–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang H et al (2017) Stem cells in the skin. Stem Cells Toxicol Med:502–526

    Google Scholar 

  39. Ezhkova E et al (2009) Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136(6):1122–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sen GL et al (2010) DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 463(7280):563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frye M, Benitah SA (2012) Chromatin regulators in mammalian epidermis. Seminars in cell & developmental biology, vol. 23, no. 8. Academic Press

    Google Scholar 

  42. Ezhkova E et al (2011) EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev 25(5):485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sen GL et al (2008) Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev 22(14):1865–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Geyfman M et al (2012) Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc Natl Acad Sci 109(29):11758–11763

    Article  CAS  PubMed  Google Scholar 

  45. Frye M, Watt FM (2006) The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol 16(10):971–981

    Article  CAS  PubMed  Google Scholar 

  46. Powell BC et al (1998) The notch signalling pathway in hair growth. Mech Dev 78(1–2):189–192

    Article  CAS  PubMed  Google Scholar 

  47. Pan Y et al (2004) γ-Secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Dev Cell 7(5):731–743

    Article  CAS  PubMed  Google Scholar 

  48. Blanpain C et al (2006) Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev 20(21):3022–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alonso L, Fuchs E (2006) The hair cycle. J Cell Sci 119(3):391–393

    Article  CAS  PubMed  Google Scholar 

  50. Oshima H et al (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104(2):233–245

    Article  CAS  PubMed  Google Scholar 

  51. Nowak JA et al (2008) Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3(1):33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cotsarelis G (2006) Epithelial stem cells: a folliculocentric view. J Investig Dermatol 126(7):1459–1468

    Article  CAS  PubMed  Google Scholar 

  53. Taylor G et al (2000) Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102(4):451–461

    Article  CAS  PubMed  Google Scholar 

  54. Tumbar T et al (2004) Defining the epithelial stem cell niche in skin. Science 303(5656):359–363

    Article  CAS  PubMed  Google Scholar 

  55. Niemann C et al (2003) Indian hedgehog and β-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci 100(suppl 1):11873–11880

    Article  CAS  PubMed  Google Scholar 

  56. Morris RJ et al (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22(4):411

    Article  CAS  PubMed  Google Scholar 

  57. Lo Celso C et al (2008) Characterization of bipotential epidermal progenitors derived from human sebaceous gland: contrasting roles of c-Myc and β-catenin. Stem Cells 26(5):1241–1252

    Article  CAS  PubMed  Google Scholar 

  58. Ito M et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351

    Article  CAS  PubMed  Google Scholar 

  59. Ito M et al (2004) Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation 72(9–10):548–557

    Article  PubMed  Google Scholar 

  60. Hoffman RM (2006) The pluripotency of hair follicle stem cells. Cell Cycle 5(3):232–233

    Article  CAS  PubMed  Google Scholar 

  61. Liu Y et al (2003) Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J Investig Dermatol 121(5):963–968

    Article  CAS  PubMed  Google Scholar 

  62. Levy V et al (2007) Epidermal stem cells arise from the hair follicle after wounding. FASEB J 21(7):1358–1366

    Article  CAS  PubMed  Google Scholar 

  63. Legué E, Nicolas J-F (2005) Hair follicle renewal: organization of stem cells in the matrix and the role of stereotyped lineages and behaviors. Development 132(18):4143–4154

    Article  PubMed  CAS  Google Scholar 

  64. Lyle S et al (1999) Human hair follicle bulge cells are biochemically distinct and possess an epithelial stem cell phenotype. Journal of Investigative Dermatology Symposium Proceedings, vol 4, no. 3, Elsevier

    Google Scholar 

  65. O'Shaughnessy RFL et al (2004) The WNT signalling modulator, Wise, is expressed in an interaction-dependent manner during hair-follicle cycling. J Investig Dermatol 123(4):613–621

    Article  CAS  PubMed  Google Scholar 

  66. Fuchs E, Horsley V (2008) More than one way to skin.... Genes Dev 22(8):976–985

    Google Scholar 

  67. Suda T, Arai F (2008) Wnt signaling in the niche. Cell 132(5):729–730

    Article  CAS  PubMed  Google Scholar 

  68. Niehrs C (2006) Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25(57):7469

    Article  CAS  PubMed  Google Scholar 

  69. Yang L, Peng R (2010) Unveiling hair follicle stem cells. Stem Cell Rev Rep 6(4):658–664

    Article  PubMed  Google Scholar 

  70. van Genderen C et al (1994) Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 8(22):2691–2703

    Article  PubMed  Google Scholar 

  71. Kretzschmar K, Clevers H (2017) Wnt/β-catenin signaling in adult mammalian epithelial stem cells. Dev Biol 428(2):273–282

    Article  CAS  PubMed  Google Scholar 

  72. Nguyen H, Rendl M, Fuchs E (2006) Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 127(1):171–183

    Article  CAS  PubMed  Google Scholar 

  73. Kimura-Ueki M et al (2012) Hair cycle resting phase is regulated by cyclic epithelial FGF18 signaling. J Investig Dermatol 132(5):1338–1345

    Article  CAS  PubMed  Google Scholar 

  74. Woo W-M, Oro AE (2011) SnapShot: hair follicle stem cells. Cell 146(2):334–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Plikus MV et al (2008) Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451(7176):340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cadau, S., Rosignoli, C., Rhetore, S., Voegel, J. J., Parenteau-Bareil, R., & Berthod, F. (2013). Early stages of hair follicle development: a step by step microarray identity. European Journal of Dermatology, 1(1), 0-0.

    Google Scholar 

  77. Telerman SB et al (2017) Dermal Blimp1 acts downstream of epidermal TGFβ and Wnt/β-catenin to regulate hair follicle formation and growth. J Investig Dermatol 137(11):2270–2281

    Article  CAS  PubMed  Google Scholar 

  78. Silva-Vargas V et al (2005) β-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev Cell 9(1):121–131

    Article  CAS  PubMed  Google Scholar 

  79. Janich P et al (2011) The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 480(7376):209

    Article  CAS  PubMed  Google Scholar 

  80. Lin KK et al (2009) Circadian clock genes contribute to the regulation of hair follicle cycling. PLoS Genet 5(7):e1000573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Plikus MV et al (2013) Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling. Proc Natl Acad Sci 110(23):E2106–E2115

    Article  CAS  PubMed  Google Scholar 

  82. Zouboulis CC (2004) Acne and sebaceous gland function. Clin Dermatol 22(5):360–366

    Article  PubMed  Google Scholar 

  83. Niemann C (2009) Differentiation of the sebaceous gland. Dermato-endocrinology 1(2):64–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Frances D, Niemann C (2012) Stem cell dynamics in sebaceous gland morphogenesis in mouse skin. Dev Biol 363(1):138–146

    Article  CAS  PubMed  Google Scholar 

  85. Watt FM, Lo Celso C, Silva-Vargas V (2006) Epidermal stem cells: an update. Curr Opin Genet Dev 16(5):518–524

    Article  CAS  PubMed  Google Scholar 

  86. Ghazizadeh S, Taichman LB (2001) Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J 20(6):1215–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kretzschmar K et al (2014) BLIMP1 is required for postnatal epidermal homeostasis but does not define a sebaceous gland progenitor under steady-state conditions. Stem Cell Rep 3(4):620–633

    Article  CAS  Google Scholar 

  88. Allen M et al (2003) Hedgehog signaling regulates sebaceous gland development. Am J Pathol 163(6):2173–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Selleri S et al (2006) Doxorubicin-induced alopecia is associated with sebaceous gland degeneration. J Investig Dermatol 126(4):711–720

    Article  CAS  PubMed  Google Scholar 

  90. Braun KM et al (2003) Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130(21):5241–5255

    Article  CAS  PubMed  Google Scholar 

  91. Horsley V et al (2006) Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126(3):597–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Han G et al (2006) Smad7-induced β-catenin degradation alters epidermal appendage development. Dev Cell 11(3):301–312

    Article  CAS  PubMed  Google Scholar 

  93. Takeda H et al (2006) Human sebaceous tumors harbor inactivating mutations in LEF1. Nat Med 12(4):395

    Article  CAS  PubMed  Google Scholar 

  94. Shaw TJ, Martin P (2016) Wound repair: a showcase for cell plasticity and migration. Curr Opin Cell Biol 42:29–37

    Article  CAS  PubMed  Google Scholar 

  95. Gurtner GC et al (2008) Wound repair and regeneration. Nature 453(7193):314

    Article  CAS  PubMed  Google Scholar 

  96. Ge Y et al (2017) Stem cell lineage infidelity drives wound repair and cancer. Cell 169(4):636–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Landén NX, Li D, Ståhle M (2016) Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 73(20):3861–3885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Dekoninck S, Blanpain C (2019) Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol 21(1):18

    Article  CAS  PubMed  Google Scholar 

  99. Schmidt BA, Horsley V (2013) Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 140(7):1517–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ronfard V et al (1991) Use of human keratinocytes cultured on fibrin glue in the treatment of burn wounds. Burns 17(3):181–184

    Article  CAS  PubMed  Google Scholar 

  101. Rowan MP (2015) et al. "burn wound healing and treatment: review and advancements.". Crit Care 19(1):243

    Article  PubMed  PubMed Central  Google Scholar 

  102. Auxenfans C et al (2015) Cultured autologous keratinocytes in the treatment of large and deep burns: a retrospective study over 15 years. Burns 41(1):71–79

    Article  PubMed  Google Scholar 

  103. ter Horst B et al (2018) Advances in keratinocyte delivery in burn wound care. Adv Drug Deliv Rev 123:18–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Živicová V et al (2017) Analysis of dermal fibroblasts isolated from neonatal and child cleft lip and adult skin: developmental implications on reconstructive surgery. Int J Mol Med 40(5):1323–1334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lenkiewicz, A.M. (2019). Epidermal Stem Cells. In: Ratajczak, M. (eds) Stem Cells. Advances in Experimental Medicine and Biology, vol 1201. Springer, Cham. https://doi.org/10.1007/978-3-030-31206-0_12

Download citation

Publish with us

Policies and ethics