Skip to main content

Nanotechnology in Dentistry: Past, Present, and Future

  • Chapter
  • First Online:
Nanomaterials for Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Nanotechnology is the production of functional materials and structures ranging from 0.1 to 100 nm using various chemical and physical methods. The fields of application of nanotechnology cover a wide range including machinery production, defense industry, space and aircraft technologies, information and communication systems, energy systems, chemistry, environment, molecular biology, gene engineering, medicine, and dentistry. Nano dentistry may be described as the science and technology of diagnosing, treating and preventing oral and dental diseases, reducing/eliminating pain and improving oral health, by using nanosized materials, tissue engineering and dental nanorobotics. Although many diseases in dentistry can be treated by conventional methods, the new era of nanotechnology in dentistry will bring revolutionary approaches in diagnosis and treatment of dental diseases. Current research in nanodentistry includes preventive, diagnostic, reconstructive, regenerative, restorative, and rehabilitative fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afkhami, F., Pourhashemi, S. J., Sadegh, M., Salehi, Y., & Fard, M. J. (2015). Antibiofilm efficacy of silver nanoparticles as a vehicle for calcium hydroxide medicament against Enterococcus faecalis. Journal of Dentistry, 43(12), 1573–1579.

    Article  CAS  PubMed  Google Scholar 

  • Ajayan, P. M., & Zhou, O. Z. (2001). Applications of carbon nanotubes. In M. S. Dresselhaus, G. Dresselhaus, & P. Avouris (Eds.), Carbon nanotubes. Topics in applied physics (Vol. 80, pp. 391–425). Berlin: Springer.

    Chapter  Google Scholar 

  • Akagawa, Y., Hosokawa, R., Sato, Y., & Kamayama, K. (1998). Comparison between freestanding and tooth-connected partially stabilized zirconia implants after two years’ function in monkeys: A clinical and histologic study. The Journal of Prosthetic Dentistry, 80(5), 551–558.

    Article  CAS  PubMed  Google Scholar 

  • AlKahtani, R. N. (2018). The implications and applications of nanotechnology in dentistry: A review. The Saudi Dental Journal, 30(2), 107–116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves, L. P., Pilla, V., Murgo, D. O., & Munin, E. (2010). Core-shell quantum dots tailor the fluorescence of dental resin composites. Journal of Dentistry, 38(2), 149–152.

    Article  CAS  PubMed  Google Scholar 

  • Beherei, H. H., El-Magharby, A., & Abdel-Aal, M. S. (2011). Preparation and characterization of novel antibacterial nanoceramic-composites for bone grafting. Der Pharma Chemica, 3(6), 10–27.

    CAS  Google Scholar 

  • Binns, C. (2010). Introduction to nanoscience and nanotechnology. New York, NY: Wiley & Sons.

    Book  Google Scholar 

  • Carpio, I. E. M., Santos, C. M., Wei, X., & Rodrigues, D. F. (2012). Toxicity of a polymer–graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale, 4(15), 4746–4756.

    Article  CAS  Google Scholar 

  • Chalmers, N. I., Palmer, R. J., Jr., Du-Thumm, L., Sullivan, R., Shi, W., & Kolenbrander, P. E. (2007). Use of quantum dot luminescent probes to achieve single-cell resolution of human oral bacteria in biofilms. Applied and Environmental Microbiology, 73(2), 630–636.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C., Trindade, F. Z., de Jager, N., Kleverlaan, C. J., & Feilzer, A. J. (2014). The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses. Dental Materials, 30(9), 954–962.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Clarkson, B. H., Sun, K., & Mansfield, J. F. (2005). Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. Journal of Colloid and Interface Science, 288(1), 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M. H. (2010). Update on dental nanocomposites. Journal of Dental Research, 89(6), 549–560.

    Article  CAS  PubMed  Google Scholar 

  • Chesnutt, B. M., Viano, A. M., Yuan, Y., Yang, Y., Guda, T., Appleford, M. R., … Bumgardner, J. D. (2009). Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Journal of Biomedical Materials Research. Part A, 88(2), 491–502.

    Article  PubMed  CAS  Google Scholar 

  • Chesnutt, B. M., Yuan, Y., Buddington, K., Haggard, W. O., & Bumgardner, J. D. (2009). Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Engineering. Part A, 15(9), 2571–2579.

    Article  CAS  PubMed  Google Scholar 

  • Chitsazi, M. T., Shirmohammadi, A., Faramarzie, M., Pourabbas, R., & Rostamzadeh, A. (2011). A clinical comparison of nano-crystalline hydroxyapatite (Ostim) and autogenous bone graft in the treatment of periodontal intrabony defects. Medicina Oral, Patología Oral y Cirugía Bucal, 16(3), 448–453.

    Article  Google Scholar 

  • Christodoulides, N., Floriano, P. N., Miller, C. S., Ebersole, J. L., Mohanty, S., Dharshan, P., … McDevitt, J. T. (2007). Lab-on-a-chip methods for point-of-care measurements of salivary biomarkers of periodontitis. Annals of the New York Academy of Sciences, 1098, 411–428.

    Article  CAS  PubMed  Google Scholar 

  • Cummins, D. (2009). Dentin hypersensitivity: From diagnosis to a breakthrough for everyday sensitivity relief. The Journal of Clinical Dentistry, 20(1), 1–9.

    PubMed  Google Scholar 

  • Damm, C., Münstedt, H., & Rösch, A. (2007). Long-term antimicrobial polyamide 6/silver-nanocomposites. Journal of Materials Science, 42(15), 6067–6073.

    Article  CAS  Google Scholar 

  • Danelon, M., Pessan, J. P., Neto, F. N., de Camargo, E. R., & Delbem, A. C. (2015). Effect of toothpaste with nano-sized trimetaphosphate on dental caries: In situ study. Journal of Dentistry, 43(7), 806–813.

    Article  CAS  PubMed  Google Scholar 

  • de Andrade, A. K., Duarte, R. M., Medeiros e Silva, F. D., Batista, A. U., Lima, K. C., Pontual, M. L., & Montes, M. A. (2011). 30-Month randomised clinical trial to evaluate the clinical performance of a nanofill and a nanohybrid composite. Journal of Dentistry, 39(1), 8–15.

    Article  PubMed  Google Scholar 

  • Drexler, K. E. (1986). Engines of creation: The coming era of nanotechnology (pp. 99–129). New York, NY: Anchor Press.

    Google Scholar 

  • Dunphy Guzman, K. A., Taylor, M. R., & Banfield, J. F. (2006). Environmental risks of nanotechnology: National nanotechnology initiative funding, 2000-2004. Environmental Science & Technology, 40(5), 1401–1407.

    Article  CAS  Google Scholar 

  • Ebadifar, A., Nomani, M., & Fatemi, S. A. (2017). Effect of nano-hydroxyapatite toothpaste on microhardness ofartificial carious lesions created on extracted teeth. Journal of Dental Research, Dental Clinics, Dental Prospects, 11(1), 14–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis-Behnke, R. G., Liang, Y. X., You, S. W., Tay, D. K., Zhang, S., So, K. F., & Schneider, G. E. (2006). Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 5054–5059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estafan, D. J. (1998). Invasive and non-invasive dental analgesia techniques. General Dentistry, 46(6), 600–603.

    CAS  PubMed  Google Scholar 

  • Farr, C. (1997). Biotech in periodontics: Molecular engineering yields new therapies. Dentistry Today, 16(10), 92,94–92,97.

    Google Scholar 

  • Feng, Y., Cao, C., Li, B. E., Liu, X. Y., & Dong, Y. Q. (2008). [Primary study on the antibacterial property of silver-loaded nanotitania coatings]. Zhonghua Yi Xue Za Zhi, 88(29), 2077–2080.

    Google Scholar 

  • Feynman, R. P. (1960). There’s plenty of room at the bottom. Engineering and Science, 23, 22–36.

    Google Scholar 

  • Fioretti, F., Mendoza-Palomares, C., Helms, M., Al Alam, D., Richert, L., Arntz, Y., … Benkirane-Jessel, N. (2010). Nanostructured assemblies for dental application. ACS Nano, 4(6), 3277–3287.

    Article  CAS  PubMed  Google Scholar 

  • Freitas, R. A., Jr. (2005). Nanotechnology, nanomedicine andnanosurgery. International Journal of Surgery, 3(4), 243–246.

    Article  PubMed  Google Scholar 

  • Gad, M., ArRejaie, A. S., Abdel-Halim, M. S., & Rahoma, A. (2016). The reinforcement effect of nano-zirconia on the transverse strength of repaired acrylic denture base. International Journal of Dentistry, 2016, 7094056.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gambhir, R. S., Sogi, G. M., Nirola, A., Brar, R., Sekhon, T., & Kakar, H. (2013). Nanotechnology in dentistry: Current achievements and prospects. Journal of Orofacial Sciences, 5(1), 9–14.

    Article  CAS  Google Scholar 

  • García-Contreras, R., Argueta-Figueroa, L., Mejía-Rubalcava, C., Jiménez-Martínez, R., Cuevas-Guajardo, S., Sánchez-Reyna, P. A., & Mendieta-Zeron, H. (2011). Perspectives for the use of silver nanoparticles in dental practice. International Dental Journal, 61(6), 297–301.

    Article  PubMed  Google Scholar 

  • Gau, V., & Wong, D. (2007). Oral fluid nanosensor test (OFNASET) with advanced electrochemical-based molecular analysis platform. Annals of the New York Academy of Sciences, 1098, 401–410.

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro-Tanomaru, J. M., Trindade-Junior, A., Costa, B. C., da Silva, G. F., Drullis Cifali, L., Basso Bernardi, M. I., & Tanomaru-Filho, M. (2014). Effect of zirconium oxide and zinc oxide nanoparticles on physicochemical properties and antibiofilm activity of a calcium silicate-based material. Scientific World Journal, 2014, 975213.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hasanzadeh, M., & Shadjou, N. (2016). Electrochemical nanobiosensing in whole blood: Recent advances. TrAC Trends in Analytical Chemistry, 80, 167–176.

    Article  CAS  Google Scholar 

  • Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., … Fan, C. (2010). Graphene-based antibacterial paper. ACS Nano, 4(7), 4317–4323.

    Article  CAS  PubMed  Google Scholar 

  • Iijima, S. (1991). Helical microtubules of graphite carbon. Nature, 354, 56–58.

    Article  CAS  Google Scholar 

  • Ionescu, A., Brambilla, E., Travan, A., Marsich, E., Donati, I., Gobbi, P., … Breschi, L. (2015). Silver–polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro. Journal of Dentistry, 43(12), 1483–1490.

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri, H. M., & Balaji, P. R. (2005). Nanotechnology: The future of dentistry. The Journal of Indian Prosthodontic Society, 5(1), 15–17.

    Article  Google Scholar 

  • Jia, H., Hou, W., Wei, L., Xu, B., & Liu, X. (2008). The structures and antibacterial properties of nano-SiO 2 supported silver/zinc–silver materials. Dental Materials, 24(2), 244–249.

    Article  CAS  PubMed  Google Scholar 

  • Josset, Y., Oum’Hamed, Z., Zarrinpour, A., Lorenzato, M., Adnet, J. J., & Laurent-Maquin, D. (1999). In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics. Journal of Biomedical Materials Research, 47(4), 481–493.

    Article  CAS  PubMed  Google Scholar 

  • Juan, L., Zhimin, Z., Anchun, M., Lei, L., & Jingchao, Z. (2010). Deposition of silver nanoparticles on titanium surface for antibacterial effect. International Journal of Nanomedicine, 5, 261–267.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kailasanathan, C., Selvakumar, N., & Naidu, V. (2012). Structure and properties of titania reinforced nano-hydroxyapatite/gelatin bio-composites for bone graft materials. Ceramics International, 38(1), 571–579.

    Article  CAS  Google Scholar 

  • Kanaparthy, R., & Kanaparthy, A. (2011). The changing face of dentistry: Nanotechnology. International Journal of Nanomedicine, 6, 2799–2804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimi, M. A., Rouzbahani, H. S., Asadinia, R., Hatefi-Mehrjerdi, A., Mashhadizadeh, M. H., Ardakani, B. R., … Zebarjad, S. M. (2011). Synthesis and characterization of nanoparticles and nanocomposite of ZnO and MgO by sonochemical method and their application for zinc polycarboxylate dental cement preparation. International Nano Letters, 1(1), 43–51.

    CAS  Google Scholar 

  • Kasaj, A., Röhrig, B., Zafiropoulos, G. G., & Willershausen, B. (2008). Clinical evaluation of nanocrystalline hydroxyapatite paste in the treatment of human periodontal bony defects—A randomized controlled clinical trial: 6-month results. Journal of Periodontology, 79(3), 394–400.

    Article  CAS  PubMed  Google Scholar 

  • Kazi, K. M., Mandal, A. S., Biswas, N., Guha, A., Chatterjee, S., Behera, M., & Kuotsu, K. (2010). Niosome: A future of targeted drug delivery systems. Journal of Advanced Pharmaceutical Technology & Research, 1(4), 374–380.

    Article  CAS  Google Scholar 

  • Kelly, C. M., Wilkins, R. M., Gitelis, S., Hartjen, C., Watson, J. T., & Kim, P. T. (2001). The use of a surgical grade calcium sulfate as a bone graft substitute: Results of a multicenter trial. Clinical Orthopaedics and Related Research, 382, 42–50.

    Article  Google Scholar 

  • Kim, K., & Fisher, J. P. (2007). Nanoparticle technology in bone tissue engineering. Journal of Drug Targeting, 15(4), 241–252.

    Article  CAS  PubMed  Google Scholar 

  • Kohli, P., & Martin, C. R. (2003). Smart nanotubes for biomedical and biotechnological applications. Drug News & Perspectives, 16(9), 566–573.

    Article  CAS  Google Scholar 

  • Kong, L. X., Peng, Z., Li, S. D., & Bartold, P. M. (2006). Nanotechnology and its role in the management of periodontal diseases. Periodontology 2000, 40, 184–196.

    Article  PubMed  Google Scholar 

  • Korkmaz, Y., Ozel, E., Attar, N., & Bicer, C. O. (2010). Influence of different conditioning methods on the shear bond strength of novel light-curing nano-ionomer restorative to enamel and dentin. Lasers in Medical Science, 25(6), 861–866.

    Article  PubMed  Google Scholar 

  • Krätschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. (1990). Solid C60: A new form of carbon. Nature, 347, 354–358.

    Article  Google Scholar 

  • Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318, 162–163.

    Article  CAS  Google Scholar 

  • Kulal, R., Jayanti, I., Sambashivaiah, S., & Bilchodmath, S. (2016). An in-vitro comparison of nano hydroxyapatite, novamin and proargin desensitizing toothpastes - A SEM study. Journal of Clinical and Diagnostic Research, 10(10), ZC51–ZC54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulshrestha, S., Khan, S., Meena, R., Singh, B. R., & Khan, A. U. (2014). A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans. Biofouling, 30(10), 1281–1294.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D. K., Kim, S. V., Limansubroto, A. N., Yen, A., Soundia, A., Wang, C. Y., … Ho, D. (2015). Nanodiamond–gutta percha composite biomaterials for root canal therapy. ACS Nano, 9(11), 11490–11501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S. Y., Kwon, H. K., & Kim, B. I. (2008). Effect of dentinal tubule occlusion by dentifrice containing nano-carbonate apatite. Journal of Oral Rehabilitation, 35(11), 847–853.

    Article  CAS  PubMed  Google Scholar 

  • Lee, W. J., Alhoshan, M., & Smyrl, W. H. (2006). Titanium dioxide nanotube arrays fabricated by anodizing processes electrochemical properties. Journal of the Electrochemical Society, 153(11), B499–B505.

    Article  CAS  Google Scholar 

  • Lelli, M., Marchisio, O., Foltran, I., Genovesi, A., Montebugnoli, G., Marcaccio, M., … Roveri, N. (2013). Different corrosive effects on hydroxyapatite nanocrystals and amine flüoride-based mouthwashes on dental titanium brackets: A comparative in vitro study. International Journal of Nanomedicine, 8, 307–314.

    PubMed  PubMed Central  Google Scholar 

  • Li, L., Pan, H., Tao, J., Xu, X., Mao, C., Gu, X., & Tang, R. (2008). Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. Journal of Materials Chemistry, 18(34), 4079–4084.

    Article  CAS  Google Scholar 

  • Liao, S., Wang, W., Uo, M., Ohkawa, S., Akasaka, T., Tamura, K., … Watari, F. (2005). A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials, 26(36), 7564–7571.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Douglas, T., Zamponi, C., Becker, S. T., Sherry, E., Sivananthan, S., … Warnke, P. H. (2011). Comparison of in vitro biocompatibility of NanoBone and BioOss for human osteoblasts. Clinical Oral Implants Research, 22(11), 1259–1264.

    Article  PubMed  Google Scholar 

  • Lughi, V., & Sergo, V. (2010). Low temperature degradation-aging-of zirconia: A critical review of the relevant aspects in dentistry. Dental Materials, 26(8), 807–820.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J., Wong, H., Kong, L. B., & Peng, K. W. (2003). Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology, 14(6), 619.

    Article  CAS  Google Scholar 

  • Moshaverinia, A., Ansari, S., Movasaghi, Z., Billington, R. W., Darr, J. A., & Rehman, I. U. (2008). Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dental Materials, 24(10), 1381–1390.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima, S., Yoshie, M., Sano, H., & Bahar, A. (2009). Effect of a test dentifrice containing nano-sized calcium carbonate on remineralization of enamel lesions in vitro. Journal of Oral Science, 51(1), 69–77.

    Article  PubMed  Google Scholar 

  • Nam, K.-Y. (2011). In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. The Journal of Advanced Prosthodontics, 3(1), 20–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayar, S., Bhuminathan, S., & Muthuvignesh, J. (2011). Upsurge of nanotechnology in dentistry and dental implants. Indian Journal of Multidisciplinary Dentistry, 1(5), 264–268.

    Google Scholar 

  • Nguyen, S., Hiorth, M., Rykke, M., & Smistad, G. (2011). The potential of liposomes as dental drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 77(1), 75–83.

    Article  CAS  PubMed  Google Scholar 

  • Oh, S. H., Finones, R. R., Daraio, C., Chen, L. H., & Jin, S. (2005). Growth of nanoscale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials, 26(24), 4938–4943.

    Article  CAS  PubMed  Google Scholar 

  • Pan, H. A., Hung, Y. C., Chiou, J. C., Tai, S. M., Chen, H. H., & Huang, G. S. (2012). Nanosurface design of dental implants for improved cell growth and function. Nanotechnology, 23(33), 335703.

    Article  PubMed  CAS  Google Scholar 

  • Pandit, N., Sharma, A., Jain, A., Bali, D., Malik, R., & Gugnani, S. (2015). The use of nanocrystalline and two other forms of calcium sulfate in the treatment of infrabony defects: A clinical and radiographic study. Journal of Indian Society of Periodontology, 19(5), 545–553.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul, N. M., Bader, S. J., Schricker, S. R., & Parquette, J. R. (2006). 2,3-Branching benzyl ether dendrimers for the enhancement of dental composites. Reactive and Functional Polymers, 66(12), 1684–1695.

    Article  CAS  Google Scholar 

  • Paulose, M., Shankar, K., Yoriya, S., Prakasam, H. E., Varghese, O. K., Mor, G. K., … Grimes, C. A. (2006). Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length. The Journal of Physical Chemistry. B, 110(33), 16179–16184.

    Article  CAS  PubMed  Google Scholar 

  • Peng, L., Cheng, X., Zhuo, R., Lan, J., Wang, Y., Shi, B., & Li, S. (2009). Novel gene-activated matrix with embedded chitosan/plasmid DNA nanoparticles encoding PDGF for periodontal tissue engineering. Journal of Biomedical Materials Research, 90(2), 564–576.

    Article  PubMed  CAS  Google Scholar 

  • Pepla, E., Besharat, L. K., Palaia, G., Tenore, G., & Migliau, G. (2014). Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: A review of literature. Annali di Stomatologia, 5(3), 108–114.

    PubMed  PubMed Central  Google Scholar 

  • Percival, S. L., Bowler, P. G., & Russell, D. (2005). Bacterial resistance to silver in wound care. The Journal of Hospital Infection, 60(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Petrou, I., Heu, R., Stranick, M., Lavender, S., Zaidel, L., Cummins, D., … Gimzewski, J. K. (2009). A breakthrough therapy for dentin hypersensitivity: How dental products containing 8% arginine and calcium carbonate work to deliver effective relief of sensitive teeth. The Journal of Clinical Dentistry, 20(1), 23–31.

    PubMed  Google Scholar 

  • Piñón-Segundo, E., Ganem-Quintanar, A., Alonso-Pérez, V., & Quintanar-Guerrero, D. (2005). Preparation and characterization of triclosan nanoparticles for periodontal treatment. International Journal of Pharmaceutics, 294(1-2), 217–232.

    Article  PubMed  CAS  Google Scholar 

  • Pragati, S., Ashok, S., & Kuldeep, S. (2009). Recent advances in periodontal drug delivery systems. International Journal of Drug Delivery, 1, 1–14.

    Article  CAS  Google Scholar 

  • Price, R. L., Ellison, K., Haberstroh, K. M., & Webster, T. J. (2004). Nanometer surface roughness increases select osteoblasts adhesion on carbon nanofiber compacts. Journal of Biomedical Materials Research. Part A, 70(1), 129–138.

    Article  PubMed  CAS  Google Scholar 

  • Raval, C., Vyas, K., Gandhi, U., Patel, B., & Patel, P. (2016). Nanotechnology in dentistry: A review. Journal of Advanced Medical and Dental Sciences Research, 4(3), 51–53.

    Google Scholar 

  • Reves, B. T., Jennings, J. A., Bumgardner, J. D., & Haggard, W. O. (2012). Preparation and functional assessment of composite chitosan-nano-hydroxyapatite scaffolds for bone regeneration. Journal of Functional Biomaterials, 3(1), 114–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roulet, J. F., & Roulet-Mehrens, T. K. (1982). The surface roughness of restorative materials and dental tissues after polishing with prophylaxis and polishing pastes. Journal of Periodontology, 53(4), 257–266.

    Article  CAS  PubMed  Google Scholar 

  • Sadat-Shojai, M., Atai, M., Nodehi, A., & Khanlar, L. N. (2010). Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dental Materials, 26(5), 471–482.

    Article  CAS  PubMed  Google Scholar 

  • Samiei, M., Aghazadeh, M., Lotfi, M., Shakoei, S., Aghazadeh, Z., & Pakdel, S. M. V. (2013). Antimicrobial efficacy of mineral trioxide aggregate with and without silver nanoparticles. The Iranian Endodontic Journal, 8(4), 166–170.

    PubMed  Google Scholar 

  • Saravana, K. R., & Vijayalakshmi, R. (2006). Nanotechnology in dentistry. Indian Journal of Dental Research, 17(2), 62–65.

    Article  PubMed  Google Scholar 

  • Sathyanarayanan, M. B., Balachandranath, R., Genji Srinivasulu, Y., Kannaiyan, S. K., & Subbiahdoss, G. (2013). The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiology, 2013, 272086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Satyanarayana, T. S. V., & Rai, R. (2011). Nanotechnology: The future. Journal of Interdisciplinary Dentistry, 1(2), 93–100.

    Article  Google Scholar 

  • Schneider, O. D., Stepuk, A., Mohn, D., Luechinger, N. A., Feldman, K., & Stark, W. J. (2010). Light-curable polymer/calcium phosphate nanocomposite glue for bone defect treatment. Acta Biomaterialia, 6(7), 2704–2710.

    Article  CAS  PubMed  Google Scholar 

  • Schulz, H., Schimmoeller, B., Pratsinis, S. E., Salz, U., & Bock, T. (2008). Radiopaque dental adhesives: Dispersion of flame-made Ta2O5/SiO2 nanoparticles in methacrylic matrices. Journal of Dentistry, 36(8), 579–587.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., Cross, S. E., Hsueh, C., Wali, R. P., Stieg, A. Z., & Gimzewski, J. K. (2010). Nanocharacterization in dentistry. International Journal of Molecular Sciences, 11(6), 2523–2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheikh, F. A., Barakat, N. A., Kanjwal, M. A., Nirmala, R., Lee, J. H., Kim, H., & Kim, H. Y. (2010). Electrospun titanium dioxide nanofibers containing hydroxyapatite and silver nanoparticles as future implant materials. Journal of Materials Science. Materials in Medicine, 21(9), 2551–2559.

    Article  CAS  PubMed  Google Scholar 

  • Shi, H., Tsai, W. B., Garrison, M. D., Ferrari, S., & Ratner, B. D. (1999). Template-imprinted nanostructured surfaces for protein recognition. Nature, 398(6728), 593–597.

    Article  CAS  PubMed  Google Scholar 

  • Shvero, D. K., Zatlsman, N., Hazan, R., Weiss, E. I., & Beyth, N. (2015). Characterisation of the antibacterial effect of polyethyleneimine nanoparticles in relation to particle distribution in resin composite. Journal of Dentistry, 43(2), 287–294.

    Article  CAS  PubMed  Google Scholar 

  • Simon, Z., & Watson, P. A. (2002). Biomimetic dental implants—New ways to enhance osseointegration. Journal of the Canadian Dental Association, 68(5), 286–288.

    PubMed  Google Scholar 

  • Singh, V. P., Nayak, D. G., Uppoor, A. S., & Shah, D. (2012). Clinical and radiographic evaluation of nano-crystalline hydroxyapatite bone graft (Sybograf) in combination with bioresorbable collagen membrane (Periocol) in periodontal intrabony defects. Dental Research Journal, 9(1), 60–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slavkin, H. C. (1999). Entering the era of molecular dentistry. Journal of the American Dental Association (1939), 130(3), 413–417.

    Article  CAS  Google Scholar 

  • Slenters, T. V., Hauser-Gerspach, I., Daniels, A. U., & Fromm, K. M. (2008). Silver coordination compounds as light-stable, nano-structured and anti-bacterial coatings for dental implant and restorative materials. Journal of Materials Chemistry, 18, 5359–5362.

    Article  CAS  Google Scholar 

  • Son, K. H., Hong, J. H., & Lee, J. W. (2016). Carbon nanotubes as cancer therapeutic carriers and mediators. International Journal of Nanomedicine, 11, 5163–5185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, L., & Chow, L. C. (2008). Preparation and properties of nano-sized calcium fluoride for dental applications. Dental Materials, 24(1), 111–116.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi, N. (1974). On the basic concept of nanotechnology. In Proceedings of the International Conference on Precision Engineering (ICPE). Tokyo, Japan (pp. 18–23).

    Google Scholar 

  • Tao, J., Pan, H., Zeng, Y., Xu, X., & Tang, R. (2007). Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. The Journal of Physical Chemistry. B, 111(47), 13410–13418.

    Article  CAS  PubMed  Google Scholar 

  • Tavakoli, M., Bateni, E., Rismanchian, M., Fathi, M., Doostmohammadi, A., Rabiei, A., … Mirian, M. (2012). Genotoxicity effects of nano bioactive glass and Novabone bioglass on gingival fibroblasts using single cell gel electrophoresis (comet assay): An in vitro study. Dental Research Journal, 9(3), 314–320.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomsia, A. P., Launey, M. E., Lee, J. S., Mankani, M. H., Wegst, U. G. K., & Saiz, E. (2011). Nanotechnology approaches for better dental implants. The International Journal of Oral & Maxillofacial Implants, 26, 25–49.

    Google Scholar 

  • Totu, E. E., Nechifor, A. C., Nechifor, G., Aboul-Enein, H. Y., & Cristache, C. M. (2017). Poly (methyl methacrylate) with TiO2 nanoparticles inclusion for stereolithographic complete denture manufacturing - The future in dental care for elderly edentulous patients? Journal of Dentistry, 59, 68–77.

    Article  CAS  PubMed  Google Scholar 

  • Utneja, S., Nawal, R. R., Talwar, S., & Verma, M. (2015). Current perspectives of bio-ceramic technology in endodontics: Calcium enriched mixture cement - Review of its composition, properties and applications. Restorative Dentistry & Endodontics, 40(1), 1–13.

    Article  Google Scholar 

  • Vaikuntam, J. (1997). Resin-modified glass ionomer cements (RM GICs) implications for use in pediatric dentistry. ASDC Journal of Dentistry for Children, 64(2), 131–134.

    CAS  PubMed  Google Scholar 

  • Vandiver, J., Dean, D., Patel, N., Bonfield, W., & Ortiz, C. (2005). Nanoscale variation in surface charge of synthetic hydroxyapatite detected by chemically and spatially specific high-resolution force spectroscopy. Biomaterials, 26(3), 271–283.

    Article  CAS  PubMed  Google Scholar 

  • Viljanen, E. K., Skrifvars, M., & Vallittu, P. K. (2007). Dendritic copolymers and particulate filler composites for dental applications: Degree of conversion and thermal properties. Dental Materials, 23(11), 1420–1427.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Xie, X., Li, C., Liu, H., Zhang, K., Zhou, Y., … Xu, H. H. K. (2017). Novel bioactive root canal sealer to inhibit endodontic multispecies biofilms with remineralizing calcium phosphate ions. Journal of Dentistry, 60, 25–35.

    Article  CAS  PubMed  Google Scholar 

  • West, J. L., & Halas, N. J. (2000). Applications of nanotechnology to biotechnology: Commentary. Current Opinion in Biotechnology, 11(2), 215–217.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Zhou, H., Weir, M. D., Melo, M. A. S., Levine, E. D., & Xu, H. H. K. (2015). Effect of dimethylaminohexadecyl methacrylate mass fraction on fracture toughness and antibacterial properties of CaP nanocomposite. Journal of Dentistry, 43(12), 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  • Xia, Y., Zhang, F., Xie, H., & Gu, N. (2008). Nanoparticle-reinforced resinbased dental composites. Journal of Dentistry, 36(6), 450–455.

    Article  CAS  PubMed  Google Scholar 

  • Xie, X., Wang, L., Xing, D., Arola, D. D., Weir, M. D., Bai, Y., & Xu, H. H. (2016). Protein-repellent and antibacterial functions of a calcium phosphate rechargeable nanocomposite. Journal of Dentistry, 52, 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H. H., Moreau, J. L., Sun, L., & Chow, L. C. (2008). Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite. Biomaterials, 29(32), 4261–4267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Weir, M. D., Hack, G., Fouad, A. F., & Xu, H. H. (2015). Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release. Journal of Dentistry, 43(12), 1587–1595.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metin Calisir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calisir, M. (2019). Nanotechnology in Dentistry: Past, Present, and Future. In: Tekinay, A. (eds) Nanomaterials for Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-31202-2_7

Download citation

Publish with us

Policies and ethics