Skip to main content

Neotropical Diversification: Historical Overview and Conceptual Insights

  • Chapter
  • First Online:
Neotropical Diversification: Patterns and Processes

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Studying the causes of biological diversification and the main environmental drivers involved is useful not only for the progress of fundamental science but also to inform conservation practices. Unraveling the origin and maintenance of the comparatively high Neotropical biodiversity is important to understand the global latitudinal biodiversity gradients (LBGs), which is one of the more general and conspicuous biogeographical patterns on Earth. This chapter reviews the historical development of the study of Neotropical diversification, in order to highlight the influence of methodological progress and to identify the conceptual developments that have appeared through history. Four main steps are recognized and analyzed, namely the discovery of the LBGs by pioneer naturalists, the first biogeographic studies, the inception of paleoecology and the recent revolution of molecular phylogeography. This historical account ends with an update of the current state of the study of Neotropical diversification and the main conceptual handicaps that are believed to slow progress towards a general theory on this topic. Among these constraints, emphasis is placed on (1) the shifting from one paradigm to another, (2) the extrapolation from particular case studies to the whole Neotropics, (3) the selection of biased evidence to support either one or another hypothesis, (4) the assumption that Pleistocene diversification equals to refuge diversification, and (5) the straightforward inference of diversification drivers from diversification timing. The main corollary is that the attainment of a general theory on Neotropical diversification is being delayed by conceptual, rather than methodological causes. Some solutions are proposed based on the Chamberlin’s multiple-working-hypotheses scheme and a conceptual research framework to address the problem from this perspective is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ab’Saber AN (1982) The paleoclimate and paleoecology of Brazilian Amazonia. In: Prance G (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 41–59

    Google Scholar 

  • Anderson MJ, Crist TO, Chase JM et al (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28

    PubMed  Google Scholar 

  • Antonelli A, Sanmartín I (2011) Why are there so many plants species in the Neotropics? Taxon 60:403–414

    Google Scholar 

  • Antonelli A, Quijada-Mascareñas A, Crawford AJ et al (2010) Molecular studies and phylogeography of Amazonian tetrapods and their relation to geological and climatic models. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution. A look into the past. Wiley-Blackwell, Chichester, pp 386–404

    Google Scholar 

  • Antonelli A, Zizka A, Silvestro D et al (2015) An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics. Front Genet 6:130. https://doi.org/10.3389/fgene.2015.00130

    Article  PubMed  PubMed Central  Google Scholar 

  • Antonelli A, Zizka A, Antunes F et al (2018) Amazonia is the primary source of Neotropical biodiversity. Proc Natl Acad Sci U S A 115:6034–6039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker PA, Fritz SC, Dick CW et al (2014) The emerging field of geogenomics: constraining geological problems with genetic data. Earth Sci Rev 135:38–47

    Google Scholar 

  • Beheregaray LB, Cook GM, Chao NL, Landguth EL (2015) Ecological speciation in the tropics: insights from comparative genetic studies in Amazonia. Front Genet 5:477. https://doi.org/10.3389/fgene.2014.00477

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown JH (2014) Why are there so many species in the tropics? J Biogeogr 41:8–22

    PubMed  Google Scholar 

  • Brown TA, Barnes IM (2015) The current and future applications of ancient DNA in Quaternary science. J Quat Sci 30:144–153

    Google Scholar 

  • Bush MB (1994) Amazonian speciation: a necessarily complex model. J Biogeogr 21:5–17

    Google Scholar 

  • Bush MB, De Oliverira PE (2006) The rise and fall of the Refugial Hypothesis of Amazon speciation: a paleoecological perspective. Biota Neotrop 6:1. https://doi.org/10.1590/S1676-06032006000100002

    Article  Google Scholar 

  • Cannon CH, Lerdau M (2015) Variable mating behaviors and the maintenance of tropical biodiversity. Front Genet 6:183. https://doi.org/10.3389/fgene.2015.00183

    Article  PubMed  PubMed Central  Google Scholar 

  • Carnaval AC, Bates JM (2007) Amphibian DNA shows marked genetic structure and tracks Pleistocene climate change in northeastern Brazil. Evolution 61:2942–2957

    CAS  PubMed  Google Scholar 

  • Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35:1187–1201

    Google Scholar 

  • Carnaval AC, Hickerson MJ, Haddad CFB et al (2009) Stability predicts genetic diversity in the Brazilian Atlantic fortest hotspot. Science 323:785–789

    CAS  PubMed  Google Scholar 

  • Carnaval AC, Waltari E, Rodrigues MT et al (2014) Prediction of phylogeographic endemism in an environmental complex biome. Proc R Soc B 281:20141461

    PubMed  Google Scholar 

  • Carrillo JD, Forasiepi A, Jaramillo C, Sánchez-Villagra MR (2015) Neotropical mammal diversity and the Great American Biotic Interchange: spatial and temporal variation in Souht Americs’a fossil record. Front Genet 6:451. https://doi.org/10.3389/fgene.2014.00451

    Article  Google Scholar 

  • Cavers S, Dick CW (2013) Phylogeography of neotropical trees. J Biogeogr 40:615–617

    Google Scholar 

  • Chamberlin TC (1890) The method of multiple working hypotheses. Science (old series) 15:92–96 (reprinted 1965, 148:754–759)

    Google Scholar 

  • Coates AG, Jackson JB, Collins LS et al (1992) Clossure of the isthmus of Panama: the near-shore marine record of Costa Rica and western Panama. Geol Soc Am Bull 104:814–828

    Google Scholar 

  • Cody S, Richardson JE, Rull V, Ellis C, Pennington RT (2010) The Great American Biotic Interchange revisited. Ecography 33:326–332

    Google Scholar 

  • Cohen KM, Finney SC, Gibbard PL, Fan J-X (2013) The ICS international stratigraphic chart. Episodes 36:199–204

    Google Scholar 

  • Colinvaux PA (1987) Amazon diversity in light of the paleoecological record. Quat Sci Rev 6:93–114

    Google Scholar 

  • Colinvaux PA, De Oliveira PE (2001) Amazon plant diversity and climate through the Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 166:51–63

    Google Scholar 

  • Colinvaux PA, De Oliveira PE, Moreno JE, Miller MC, Bush MB (1996) A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274:85–88

    CAS  Google Scholar 

  • Colinvaux PA, De Oliveira PE, Bush MB (2000) Amazonian and neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypothesis. Quat Sci Rev 19:141–169

    Google Scholar 

  • Collevatti RG, Terribile LC, Diniz-Filho JAF, Lima-Ribeiro MS (2015) Multimodel inference in comparative phylogeography: an integrative approach based on multiple lines of evidence. Front Genet 6:31. https://doi.org/10.3389/fgene.2015.00031

    Article  PubMed  PubMed Central  Google Scholar 

  • Colwell RK, Hurt GC (1994) Non-biological gradients in species richness and a spurious Rapoport effect. Am Nat 144:57–595

    Google Scholar 

  • Connell JH, Orias E (1964) The ecological regulation of species diversity. Am Nat 98:399–414

    Google Scholar 

  • Cox CB, Moore PD, Ladle R (2016) Biogeography: an ecological and evolutionary approach. Wiley-Blackwell, Chichester

    Google Scholar 

  • Damasceno R, Strangas ML, Carnaval AC et al (2014) Revisiting the vanishing refuge model of diversification. Front Genet 5:353. https://doi.org/10.3389/fgene.2014.00353

    Article  PubMed  PubMed Central  Google Scholar 

  • Damuth JE, Fairbridge RW (1970) Equatorial Atlantic deep-sea arkosic sands and ice-age aridity in tropical South America. Bull Geol Soc Am 81:189–206

    CAS  Google Scholar 

  • Darwin C (1839) Journal of the researches into the geology and natural history of various countries visited by HMS Beagle from 1832 to 1836. Henry Colburn, London

    Google Scholar 

  • Dexter KG, Lavin M, Torke BM et al (2017) Dispersal assembly of rain forest tree communities across the Amazon basin. Proc Natl Acad Sci U S A 114:2645–2650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dietl GP, Kidwell SM, Brenner M et al (2015) Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. Annu Rev Earth Planet Sci 43:79–103

    CAS  Google Scholar 

  • Emiliani C (1971) The amplitude of Pleistocene climatic cycles at low latitudes and the isotopic composition of glacial ice. In: Turekian KK (ed) The Late Cenozoic glacial ages. Yale University Press, New Haven, pp 183–197

    Google Scholar 

  • Erickson DL, Jones FA, Swenson NG et al (2014) Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach. Front Genet 5:358. https://doi.org/10.3389/fgene.2014.00358

    Article  PubMed  PubMed Central  Google Scholar 

  • Farrell BD, Mitter C, Futuyma DJ (1992) Diversification at the insect-plant interface. Bioscience 42:34–42

    Google Scholar 

  • Fine PVA (2015) Ecological and evolutionary drivers of geographic variation in species diversity. Annu Rev Ecol Evol Syst 46:369–392

    Google Scholar 

  • Fischer AG (1960) Latitudinal variation in organic diversity. Evolution 14:64–81

    Google Scholar 

  • Fjeldsă J (1994) Geographical patterns dor relict and young species of birds in Afriva and South America and implications for conservation priorities. Biodivers Conserv 3:207–226

    Google Scholar 

  • Forster JR (1778) Observations made during a voyage made round the world, on physical geography, natural history and ethic philosophy. G Robinson, London

    Google Scholar 

  • Fujita MK, Leaché AD (2011) A coalescent perspective on delimiting and naming species: a reply to Bauer et al. Proc R Soc B 278(1705):493–495. https://doi.org/10.1098/rspb.2010.1864

    Article  Google Scholar 

  • Garzón-Orduña JJ, Benetti-Longhini JE, Brower AVZ (2014) Timing the diversification of the Amazionian biota: butterfly divergences are consistent with Pleistocene refugia. J Biogeogr 41:1631–1638

    Google Scholar 

  • Gaston KJ, Spicer JI (2005) Biodiversity, an introduction. Blackwell, Oxford

    Google Scholar 

  • Gentry AH (1982) Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann Mo Bot Gard 69:557–593

    Google Scholar 

  • Graham CH, Carnaval AC, Cadena CD et al (2014) The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37:1–9

    Google Scholar 

  • Gutiérrez RJ, Block B (2013) Self-plagiarism in publishing. J Wildl Manag 77:1487–1488

    Google Scholar 

  • Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137

    CAS  PubMed  Google Scholar 

  • Haffer J (1997) Alternative models of vertebrate speciation in Amazonia: an overview. Biodivers Conserv 6:451–476

    Google Scholar 

  • Hawkins BA (2001) Ecology’s oldest pattern? Trends Ecol Evol 16:470

    Google Scholar 

  • Hildebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211

    Google Scholar 

  • Hipsley CA, Müller J (2014) Beyond fossil calibrations: realities of molecular clock practices in evolutionary biology. Front Genet 5:138. https://doi.org/10.3389/fgene.2014.00138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honorio Coronado EN, Dexter KG, Pennington RT et al (2015) Phylogenetic diversity of Amazonian tree communities. Divers Distrib 21:1295–1307

    Google Scholar 

  • Hoorn C (1994) An environmental reconstruction of the paleo-Amazon river system (Middle-Late Miocene, NW Amazonia). Palaeogeogr Palaeoclimatol Palaeoecol 112:187–238

    Google Scholar 

  • Hoorn C, Wesselingh F (2010) Amazonia: landscape and species evolution. A look into the past. Wiley-Blackwell, Chichester

    Google Scholar 

  • Hoorn C, Guerrero J, Sarmiento GA, Lorente MA (1995) Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23:237–241

    Google Scholar 

  • Hoorn C, Wesselingh FP, ter steege H et al (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931

    CAS  PubMed  Google Scholar 

  • Hoorn C, Wesselingh FP, ter Steege H et al (2011) Origins of biodiversity-response. Science 331:399–400

    CAS  Google Scholar 

  • Hoorn C, Mosbrugger V, Mulch A, Antonelli A (2013) Biodiversity from mountain building. Nat Geosci 6:154

    CAS  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci U S A 103:10334–10339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes CE, Pennington RT, Antonelli A (2013) Neotropical plant evolution: assembling the big picture. Bot J Linn Soc 171:1–18

    Google Scholar 

  • Hurlbert AH, Stegen JC (2014) On the processes generating latitudinal richness gradients: identifying diagnostic patterns and predictions. Front Genet 5:420. https://doi.org/10.3389/fgene.2014.00420

    Article  PubMed  PubMed Central  Google Scholar 

  • Jablonski D, Roy K, Valentine JW (2006) Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102–106

    CAS  PubMed  Google Scholar 

  • Jablonski D, Huang S, Roy K, Valentine JW (2017) Shaping the latitudinal diversity gradient: new perspectives from a synthesis of paleobiology and biogeography. Am Nat 189:1–12

    PubMed  Google Scholar 

  • Jansson R, Rodríguez-Castañeda G, Harding LE (2013) What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses. Evolution 67:1741–1755

    PubMed  Google Scholar 

  • Jaramillo C, Hoorn C, Silva SAF et al (2010) The origin of the modern Amazon rainforest: implications of the palynological and paleobotanical record. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution. A look into the past. Wiley-Blackwell, Chichester, pp 317–334

    Google Scholar 

  • Jardine PE, Abernethy FAJ, Lomax BH et al (2017) Shedding light on sporopollenin chemistry, with reference to UV reconstructions. Rev Palaeobot Palynol 238:1–6

    Google Scholar 

  • Kerhoff AJ, Moriarty PE, Weiser MD (2014) The latitudinal richness gradient in New World woody angiospermns is consistent with the tropical conservatism hypothesis. Proc Natl Acad Sci U S A 111:8125–8130

    Google Scholar 

  • Key FM, Posth C, Krause J et al (2017) Mining metagenomic data sets for ancient DNA: recommended protocols for authentication. Trends Genet 33:508–520

    CAS  PubMed  Google Scholar 

  • Krug AZ, Jablonski D, Valentine JW, Roy K (2009) Generation of earth’s first-order biodiversity pattern. Astrobiology 9:113–124

    PubMed  Google Scholar 

  • Laurin M (2012) Recent progresses in paleontological methods for dating the tree of life. Front Genet 3:130. https://doi.org/10.3389/fgene.2012.00130

    Article  PubMed  PubMed Central  Google Scholar 

  • Lomolino MV, Riddle BR, Brown JH, Whittaker RJ (2010) Biogeography. Sinauer, Sunderland

    Google Scholar 

  • MacArthur RH (1965) Patterns of species diversity. Biol Rev 40:510–533

    Google Scholar 

  • Mannion PD, Upchurch P, Benson RBJ, Goswani A (2014) The latitudinal diversity gradient through deep time. Trends Ecol Evol 29:42–50

    PubMed  Google Scholar 

  • Marshall LG, Webb SD, Sepkoski JJ, Raup DM (1982) Mammalian evolution and the great American biotic interchange. Science 215:1351–1357

    CAS  PubMed  Google Scholar 

  • Marx V (2017) Genetics: new tales from ancient DNA. Nat Methods 14:771–774

    CAS  PubMed  Google Scholar 

  • McGlone MS (1996) When history matters: scale, time, climate and tree diversity. Glob Ecol Biogeogr Lett 5:309–314

    Google Scholar 

  • McKay R, Naish T, Carter L et al (2012) Antarctic and Southern Ocean influences on Late Pleistocene global cooling. Proc Natl Acad Sci U S A 109:6423–6428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mittelbach GG, Schemske D, Cornell HV et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331

    PubMed  Google Scholar 

  • Mittermeier RA, Mittermeier CG, Robles P (1997) Megadiversity: earth’s biologically wealthiest nations. CEMEX, Mexico

    Google Scholar 

  • Mora A, Baby P, Roddaz M et al (2010) tectonic history of the Andes and sub-Adean zones: implications for the development of the Amazon drainage basin. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution. A look into the past. Wiley-Blackwell, Chichester, pp 39–60

    Google Scholar 

  • Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation purposes. Trends Ecol Evol 9:373–375

    CAS  PubMed  Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254

    PubMed  Google Scholar 

  • Moritz C, Patton JL, Schneider CJ, Smith TB (2000) Diversification of rainforest faunas: an integrated molecular approach. Annu Rev Ecol Syst 31:533–563

    Google Scholar 

  • Mutke J, Bathlott W (2005) Patterns of vascular plant diversity at continental to global scales. Biol Skr 55:521–531

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    CAS  PubMed  Google Scholar 

  • Nagalingum NS, Marshall CR, Quental TB et al (2011) Recent synchrononous radiation of a living fossil. Science 334:796–799

    CAS  PubMed  Google Scholar 

  • Noonan BP, Gaucher P (2005) Phylogeography and demography of Guyanan harlequin toads (Atelopus): diversification within a refuge. Mol Ecol 14:3017–3031

    CAS  PubMed  Google Scholar 

  • Nores M (1999) An alternative hypothesis for the origin of Amazonian bird diversity. J Biogeogr 26:475–485

    Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938

    Google Scholar 

  • Pennington RT, Dick CW (2004) The role immigrants in the assembly of South American rainforest flora. Philos Trans R Soc Lond 359:1611–1622

    Google Scholar 

  • Pennington RT, Dick CW (2010) Diversification of the Amazon flora and its relation to key geological and environmental events: a molecular perspective. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution. A look into the past. Wiley-Blackwell, Chichester, pp 373–385

    Google Scholar 

  • Pennington RT, Prado LM, Pendry CA, Pell SK, Butterwoth CA (2004) Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philos Trans R Soc Lond 359:515–537

    Google Scholar 

  • Pennington RT, Lavin M, Särkinen T et al (2010) Contrasting plant diversification histories within the Andean biodiversity hotspot. Proc Natl Acad Sci U S A 107:13783–13787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. Am Nat 100:33–46

    Google Scholar 

  • Pielou EC (1975) Ecological diversity. Wiley, New York

    Google Scholar 

  • Pielou EC (1979) Biogeography. Wiley, New York

    Google Scholar 

  • Pontarp M, Bunnefeld L, Cabral JS et al (2019) The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol Evol 34:211–223

    PubMed  Google Scholar 

  • Porto TJ, Carnaval AC, da Rocha PLB (2013) Evaluating forest refugia models using species distribution models, model filling and inclusion: a case study with 14 Brazilian species. J Biogeogr 19:330–340

    Google Scholar 

  • Prance GT (1982) Biological diversification in the tropics. Columbia University Press, New York

    Google Scholar 

  • Prates I, Rodrigues MT, Melo-Sampaio PR, Carnaval AC (2015) Phylogenetic relationships of Amazonian anole lizards (Dactyloa): taxonomic implications, new insights about phenotypic evolution and the timing of diversification. Mol Phylogenet Evol 82:258–268

    PubMed  Google Scholar 

  • Prates I, Rivera D, Rodrigues MT, Carnaval AC (2016a) A mid-Pleistocene rainforest corridor enabled synchronous invasions of the Atlantic Forest by Amazonian aanole lizards. Mol Ecol 25:5174–5186

    PubMed  Google Scholar 

  • Prates I, Xue AT, Brown JL, Alvarado-Serrano DF et al (2016b) Inferring responses to climate dynamics from historical demography in neotropical forest lizards. Proc Natl Acad Sci U S A 113:7978–1985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prates I, Melo-Sampaio PR, Drummond LO et al (2017) Biogeographic links between southern Atlantic Forest and western South America: rediscovery, re-description, and phylogenetic relationships of two rare montane anole lizards from Brasil. Mol Phylogenet Evol 113:49–58

    PubMed  Google Scholar 

  • Pyron RA, Burbrink FT (2013) Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. Trends Ecol Evol 28:729–736

    PubMed  Google Scholar 

  • Quental TB, Marshall CR (2010) Diversity dynamics, molecular phylogenies need the fossil record. Trends Ecol Evol 25:434–441

    PubMed  Google Scholar 

  • Raby M (2017) The colonial origins of tropical field stations. Am Sci 105:216–223

    Google Scholar 

  • Raven PH, Axelrod DI (1974) Angiosperm biogeography and past continental movements. Ann Mo Bot Gard 61:539–673

    Google Scholar 

  • Ribas CC, Aleixo A, Nogueira ACR et al (2011) A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proc R Soc B 279:681–689

    PubMed  Google Scholar 

  • Ricklefs RE, Schluter D (1993) Species diversity: regional and historical influences. In: Ricklefs RE, Schluter D (eds) Ecological communities: historical and geographical perspectives. University Chicago Press, Chicago, pp 350–363

    Google Scholar 

  • Rozensweig M, Schnitzer AE (2013) Self-plagiarism: perspectives for librarians. Coll Res Libr 74:492–494

    Google Scholar 

  • Rozenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Google Scholar 

  • Rull V (2004) Biogeography of the ‘Lost World’: a palaeoecological perspective. Earth-Sci Rev 67:125–137

    Google Scholar 

  • Rull V (2005) Biotic diversification in the Guayana Highlands. J Biogeogr 32:921–927

    Google Scholar 

  • Rull V (2008) Speciation timing and neotropical biodiversity: the Tertary-Quaternary debate in the light of molecular phylogenetic evidence. Mol Ecol 17:2722–2729

    PubMed  Google Scholar 

  • Rull V (2009) Microrefugia. J Biogeogr 36:481–484

    Google Scholar 

  • Rull V (2010) On microrefugia and cryptic refugia. J Biogeogr 37:1623–1627

    Google Scholar 

  • Rull V (2011a) Neotropical biodiversity: timing and potential drivers. Trends Ecol Evol 26:508–513

    PubMed  Google Scholar 

  • Rull V (2011b) Origins of biodiversity. Science 331:398–399

    CAS  PubMed  Google Scholar 

  • Rull V (2012a) Palaeobiodiversity and taxonomic resolution: linking past trends with present patterns. J Biogeogr 39:1005–1006

    Google Scholar 

  • Rull V (2012b) Cycad diversification and tropical biodiversity. Collect Bot 31:103–106

    Google Scholar 

  • Rull V (2013) Some problems in the study of the origin of neotropical biodiversity using palaeoecological and molecular phylogenetic evidence. Syst Biodivers 11:415–423

    Google Scholar 

  • Rull V (2014) Biodiversity, mountains and climate change. Collect Bot 33:75–79

    Google Scholar 

  • Rull V (2015) Pleistocene speciation is not refuge speciation. J Biogeogr 42:602–609

    Google Scholar 

  • Rull V, Montoya E (2014) Mauritia flexuosa palm swamp communities: natural or human-made? A palynological study of the Gran Sabana region (northern South America) within a neotropical context. Quat Sci Rev 99:17–33

    Google Scholar 

  • Rull V, Schubert C, Aravena R (1989) Palynological studies in the Venezuelan Guayana Shield: preliminary results. Curr Res Pleistocene 5:54–56

    Google Scholar 

  • Sanmartín I, Meseguer AS (2016) Extinction in phylogenetics and biogeography: from timetrees to patterns of biotic assemblage. Front Genet 7:35. https://doi.org/10.3389/fgene.2016.00035

    Article  PubMed  PubMed Central  Google Scholar 

  • Särkinen T, Pennington RT, Lavin M et al (2012) Evolutionary islands in the Andes: persistence and isolation explain high endemism in Adean dry tropical forests. J Biogeogr 39:884–900

    Google Scholar 

  • Scheffer M, van Nes EH, Vergnon R (2018) Toward a unifying theory of biodiversity. Proc Natl Acad Sci U S A 115:639–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schluter D (2016) Speciation, ecological opportunity, and latitude. Am Nat 187:1–18

    PubMed  Google Scholar 

  • Schultz J (2005) The ecozones of the world: the ecological divisions of the biosphere. Springer, Berlin

    Google Scholar 

  • Simon MF, Grether R, de Queiroz LP et al (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution and adaptations to fire. Proc Natl Acad Sci U S A 106:20359–20364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson B (1971) Pleistocene changes in the flora and fauna of South America. Science 173:771–780

    Google Scholar 

  • Slobodkin LB, Sanders HL (1969) On the contribution of environmental predictability to species diversity. In: Woodwell GM, Smith HH (eds) Ecological systems. Brookhaven Symp Biol 22:82–93

    Google Scholar 

  • Smith BT, McCormack JE, Cuervo AM et al (2014) The drivers of tropical speciation. Nature 515:406–409

    CAS  PubMed  Google Scholar 

  • Stebbins GL (1974) Flowering plants: evolution above the species level. Belknap Press, Cambridge

    Google Scholar 

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17:866–880

    PubMed  Google Scholar 

  • Turchetto-Zolet AC, Pinheiro F, Salgueiro F, Palma-Silva C (2013) Phylogeographical patterns shed light on evolutionary process in South America. Mol Ecol 22:1193–1213

    CAS  PubMed  Google Scholar 

  • Usinowicz J, Chang-Yang CH, Chen YY et al (2017) Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature 550:105–108. https://doi.org/10.1038/nature24038

    Article  CAS  PubMed  Google Scholar 

  • van der Hammen T, Hooghiemstra H (2000) Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quat Sci Rev 19:725–742

    Google Scholar 

  • van Tuinen M, Torres CR (2015) Potential for bias and low precision in molecular divergence time estimation of the Canopy of Life: an example from aquatic bird families. Front Genet 6:203. https://doi.org/10.3389/fgene.2015.00203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanzolini PE, Williams EE (1970) South American anoles: the geographical differentiation and evolution of the Anolis chrysolepis species group (Sauria, Iguanidae). Arq Zool São Paulo 19:1–298

    Google Scholar 

  • von Humboldt A (1850) Views of nature: or contemplation on the sublime phenomena of creation. Harrison & Sons, London

    Google Scholar 

  • Wallace AR (1853) A narrative of travels on the Amazon and Rio Negro. Dover, New York

    Google Scholar 

  • Wallace AR (1878) Tropical nature and other essays. Macmillan, New York

    Google Scholar 

  • Weeks A, Zapata F, Pell SK et al (2014) To move or to evolve: contrasting patterns of intercontinental connectivity and climatic niche evolution in “Therebintaceae” (Anacardiaceae and Burseraceae). Front Genet 5:409. https://doi.org/10.3389/fgene.2004.00409

    Article  PubMed  PubMed Central  Google Scholar 

  • Wesselingh F, Hoorn C, Kroonenberg SB et al (2010) On the origin of Amazonian landscapes and biodiversity: a synthesis. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution. A look into the past. Wiley-Blackwell, Chichester, pp 421–431

    Google Scholar 

  • Whitelock LM (2002) The cycads. Timber Press, Portland

    Google Scholar 

  • Whitmore TC, Prance GT (1987) Biogeography and Quaternary history in tropical Latin America. Oxford University Press, New York

    Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Google Scholar 

  • Wiegand T, Uriarte M, Kraft NJB et al (2017) Spatially explicit metrics of species diversity, functional diversity, and phylogenetic diversity: insights into plant community assembly processes. Annu Rev Ecol Evol Syst 48:329–351

    Google Scholar 

  • Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19:639644

    Google Scholar 

  • Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scales and synthesis. Annu Rev Ecol Evol Syst 34:273–309

    Google Scholar 

  • Willis KJ, Bhagwat SL (2009) Biodiversity and climate change. Science 326:806–807

    CAS  PubMed  Google Scholar 

  • Willis KJ, Whittaker RJ (2000) The refugial debate. Science 287:1406–1407

    CAS  PubMed  Google Scholar 

  • Willis KJ, Whittaker RJ (2002) Species diversity-scale matters. Science 295:1245–1247

    CAS  PubMed  Google Scholar 

  • Willis CG, Franzone BF, Xi Z, Davis CG (2014) The establishment of central American migratory corridors and the biogeographic origins of seasonally dry tropical forests in Mexico. Front Genet 5:433. https://doi.org/10.3389/fgene.2014.00433

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 28:199–204

    PubMed  Google Scholar 

  • Wright JS (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    PubMed  Google Scholar 

  • Yasurara M, Hunt G, Dowsett HJ et al (2012) Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol Lett 15:1174–1179

    Google Scholar 

Download references

Acknowledgements

The author is very grateful to Ana Carnaval, Peter Linder and Beryl Simpson who critically reviewed the first draft of the manuscript and provided valuable comments and suggestions that improved and enriched the original text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentí Rull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rull, V. (2020). Neotropical Diversification: Historical Overview and Conceptual Insights. In: Rull, V., Carnaval, A. (eds) Neotropical Diversification: Patterns and Processes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31167-4_2

Download citation

Publish with us

Policies and ethics