Skip to main content

Enhancing Spatial Navigation in Robot-Assisted Surgery: An Application

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Robot-assisted radical prostatectomy (RARP) has become a standardized practice in contemporary prostate cancer surgical procedures. Nowadays, the use of tailored surgical procedures in urologic surgery aims to maximize treatment efficacy while minimizing its impact on patient functions and health-related quality-of-life parameters. Augmented reality (AR) technology appears as a significant development in Image Guided Surgery (IGS) integrating surgical navigation with 3D virtual organ models registered on to the real patient’s anatomy. In particular, AR provides surgeons the ability to see through solid objects; as such, it has been exploited in different surgical specialties. In this paper, we present the development of a software system augmenting the spatial navigation of the surgical environment allowed by surgical robots. The application is able to visualize the 3D virtual model of the organ (prostate and kidneys) targeted by the surgical procedure, overlay it over its real counterpart, as captured by the endoscope camera, using of registration and tracking techniques in real time, and stream the augmentation to the surgeon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ashrafian, H., et al.: The evolution of robotic surgery: surgical and anaesthetic aspects. BJ Br. J. Anaesthesia 119(suppl_1), i72–i84 (2017)

    Google Scholar 

  2. Peters, B.S., et al.: Review of emerging surgical robotic technology. Surg. Endosc. 32(4), 1636–1655 (2018)

    Article  Google Scholar 

  3. Schwaibold, H., Wiesend, F., Bach, C.: The age of robotic surgery – is laparoscopy dead? Arab J. Urol. 16(3), 262–269 (2018)

    Article  Google Scholar 

  4. Fischer, J., et al.: Medical augmented reality based on commercial image guided surgery. In: Proceedings of the Tenth Eurographics Conference on Virtual Environments, pp. 83–86. Eurographics Association, Grenoble (2004)

    Google Scholar 

  5. Nakamoto, M., et al.: Current progress on augmented reality visualization in endoscopic surgery. Curr. Opin. Urol. 22(2), 121–126 (2012)

    Article  Google Scholar 

  6. Lamata, P., et al.: Augmented reality for minimally invasive surgery: overview and some recent advances. In: Augmented Reality. Intech (2010)

    Google Scholar 

  7. Ha, H.-G., Hong, J.: Augmented reality in medicine. Hanyang Med. Rev. 36(4), 242–247 (2016)

    Article  Google Scholar 

  8. Azuma, R., et al.: Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21(6), 34–47 (2001)

    Article  Google Scholar 

  9. Sielhorst, T., Feuerstein, M., Navab, N.: Advanced medical displays: a literature review of augmented reality. J. Display Technol. 4(4), 451–467 (2008)

    Article  Google Scholar 

  10. Violante, M.G., Vezzetti, E.: Design and implementation of 3D web-based interactive medical devices for educational purposes. Int. J. Interact. Des. Manuf. (IJIDeM) 11(1), 31–44 (2018)

    Article  Google Scholar 

  11. Violante, M.G., Vezzetti, E., Piazzolla, P.: Interactive virtual technologies in engineering education: why not 360 videos? Int. J. Interact. Des. Manuf. (IJIDeM) 13(2), 729–742 (2018)

    Article  Google Scholar 

  12. Silva, R., Oliveira, J.C., Giraldi, G.A.: Introduction to augmented reality. National laboratory for scientific computation, Av. Getulio Vargas (2003)

    Google Scholar 

  13. Carmigniani, J., et al.: Augmented reality technologies, systems and applications. Multimed. Tools Appl. 51(1), 341–377 (2011)

    Article  Google Scholar 

  14. Bernhardt, S., et al.: The status of augmented reality in laparoscopic surgery as of 2016. Med. Image Anal. 37, 66–90 (2017)

    Article  Google Scholar 

  15. Amparore, D., Checcucci, E., Gribaudo, M., Piazzolla, P., Porpiglia, F., Vezzetti, E.: Nonlinear-optimization using SQP for 3D deformable prostate model pose estimation in minimally invasive surgery. In: Proceedings of the Computer Vision Conference (CVC 2019), pp. 477–496 (2019)

    Google Scholar 

  16. Roberts, D.W., et al.: A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J. Neurosurg. 65(4), 545 (1986)

    Article  Google Scholar 

  17. Kelly, P.J., et al.: Computer-assisted stereotaxic laser resection of intra-axial brain neoplasms. J. Neurosurg. 64(3), 427 (1986)

    Article  Google Scholar 

  18. Peters, T.M.: Image-guidance for surgical procedures. Phys. Med. Biol. 51(14), R505–R540 (2006)

    Article  Google Scholar 

  19. Marcus, H.J., et al.: Comparative effectiveness and safety of image guidance systems in eurosurgery: a preclinical randomized study. J. Neurosurg. 123(2), 307–313 (2015)

    Article  Google Scholar 

  20. Cabrilo, I., Schaller, K., Bijlenga, P.: Augmented reality-assisted bypass surgery: embracing minimal invasiveness. World Neurosurg. 83(4), 596–602 (2015)

    Article  Google Scholar 

  21. Winne, C., et al.: Overlay visualization in endoscopic ENT surgery. Int. J. Comput. Assist. Radiol. Surg. 6(3), 401–406 (2011)

    Article  Google Scholar 

  22. Mirota, D.J., et al.: Evaluation of a system for high-accuracy 3D image-based registration of endoscopic video to C-arm cone-beam CT for image-guided skull base surgery. IEEE Trans. Med. Imaging 32(7), 1215–1226 (2013)

    Article  Google Scholar 

  23. Dubach, P., et al.: Image-guided otorhinolaryngology. In: Jolesz, F.A. (ed.) Intraoperative Imaging and Image-Guided Therapy, pp. 845–856 (2014)

    Google Scholar 

  24. Liu, X., et al.: Application of single-image camera calibration for ultrasound augmented laparoscopic visualization. In: Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling. International Society for Optics and Photonics (2015)

    Google Scholar 

  25. Zinser, M.J., et al.: A paradigm shift in orthognathic surgery? A comparison of navigation, computer-aided designed/computer-aided manufactured splints, and “classic” intermaxillary splints to surgical transfer of virtual orthognathic planning. J. Oral Maxillofac. Surg. 71(12), 2151 (2013)

    Article  Google Scholar 

  26. Wengert, C., et al.: Markerless Endoscopic Registration and Referencing. Springer, Heidelberg (2006)

    Book  Google Scholar 

  27. Edwards, P.J., et al.: Design and evaluation of a system for microscope-assisted guided interventions (MAGI). IEEE Trans. Med. Imaging 19(11), 1082–1093 (2000)

    Article  Google Scholar 

  28. Shuhaiber, J.H.: Augmented reality in surgery. Arch. Surg. 139(2), 170–174 (2004)

    Article  Google Scholar 

  29. Mezger, U., Jendrewski, C., Bartels, M.: Navigation in surgery. Langenbeck’s Arch. Surg. 398(4), 501–514 (2013)

    Article  Google Scholar 

  30. Marescaux, J., et al.: Augmented-reality-assisted laparoscopic adrenalectomy. JAMA 292(18), 2214–2215 (2004)

    Google Scholar 

  31. Ukimura, O., Gill, I.S.: Image-fusion, augmented reality, and predictive surgical navigation. Urol. Clin. North Am. 36(2), 115–123 (2009)

    Article  Google Scholar 

  32. Hughes-Hallett, A., et al.: Augmented reality partial nephrectomy: examining the current status and future perspectives. Urology 83(2), 266–273 (2014)

    Article  Google Scholar 

  33. Altamar, H.O., et al.: Kidney deformation and intraprocedural registration: a study of elements of image-guided kidney surgery. J. Endourol. 25(3), 511–517 (2011)

    Article  Google Scholar 

  34. Hamacher, A., et al.: Application of virtual, augmented, and mixed reality to urology. Int. Neurourol. J. 20(3), 172–181 (2016)

    Article  Google Scholar 

  35. Simpfendorfer, T., et al.: Augmented reality visualization during laparoscopic radical prostatectomy. J. Endourol. 25(12), 1841–1845 (2011)

    Article  Google Scholar 

  36. Porpiglia, F., et al.: Augmented-reality robot-assisted radical prostatectomy using hyper accuracy three-dimensional reconstruction (HA3D™) technology: a radiological and pathological study. BJU Int. 123, 834 (2018)

    Article  Google Scholar 

  37. Porpiglia, F., et al.: 3D elastic augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3DTM) technology to identify suspicious capsular involvement during dissection of periprostatic tissue: a step further in image guided surgery. J. Eur. Urol. 123(5), 834–845 (2019)

    Google Scholar 

  38. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. ACM SIGGRAPH Comput. Graph. 20(4), 151–160 (1986)

    Article  Google Scholar 

  39. Ke, T., Roumeliotis, S.I.: An efficient algebraic solution to the perspective-three-point problem. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  40. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  41. Rublee, E., et al.: ORB: An efficient alternative to SIFT or SURF (2011)

    Google Scholar 

  42. Armijo, P.R., et al.: Growth in robotic-assisted procedures is from conversion of laparoscopic procedures and not from open surgeons’ conversion: a study of trends and costs. Surg. Endosc. 32(4), 2106–2113 (2018)

    Article  Google Scholar 

  43. Abdul-Muhsin, H., Humphreys M.: Advances in laparoscopic urologic surgery techniques. F1000Research 5, 716 (2016)

    Google Scholar 

  44. Marescaux, J., et al.: Augmented-reality–assisted laparoscopic adrenalectomy. JAMA 292(18), 2211–2215 (2004)

    Google Scholar 

  45. Sugimoto, M., et al.: Image overlay navigation by markerless surface registration in gastrointestinal, hepatobiliary and pancreatic surgery. J. Hepato-Biliary-Pancreat. Sci. 17(5), 629–636 (2010)

    Article  Google Scholar 

  46. Teber, D., et al.: Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur. Urol. 56(2), 332–338 (2009)

    Article  Google Scholar 

  47. Su, L.M., et al.: Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology 73(4), 896–900 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Piazzolla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gribaudo, M., Moos, S., Piazzolla, P., Porpiglia, F., Vezzetti, E., Violante, M.G. (2020). Enhancing Spatial Navigation in Robot-Assisted Surgery: An Application. In: Rizzi, C., Andrisano, A.O., Leali, F., Gherardini, F., Pini, F., Vergnano, A. (eds) Design Tools and Methods in Industrial Engineering. ADM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-31154-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31154-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31153-7

  • Online ISBN: 978-3-030-31154-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics