Skip to main content

Optimization Design Strategy for Additive Manufacturing Process to Develop 3D Magnetic Nanocomposite Scaffolds

  • Conference paper
  • First Online:
Design Tools and Methods in Industrial Engineering (ADM 2019)

Abstract

In the current research, an optimization design strategy for additive manufacturing processes based on extrusion/injection methods was extended to the fabrication of poly(ε-caprolactone) (PCL)/iron oxide (Fe3O4) scaffolds for tissue engineering. The attention was focused on four parameters: process temperature (PT), deposition velocity (DV), screw rotation velocity (SRV), slice thickness (ST). Specifically, PCL/Fe3O4 scaffolds were manufactured varying iteratively one parameter, while maintaining constant the other three parameters. A further insight into the influence of process parameters on the morphological features and mechanical properties of PCL/Fe3O4 scaffolds was provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rijal, N.P., Adhikari, U., Khanal, S., Pai, D., Sankar, J., Bhattarai, N.: Magnesium oxide poly(ε-caprolactone)-chitosan-based composite nanofiber for tissue engineering applications. Mater. Sci. Eng., B 228, 18–27 (2018)

    Article  Google Scholar 

  2. Inzana, J.A., Olvera, D., Fuller, S.M., Kelly, J.P., Graeve, O.A., Schwarz, E.M., Kates, S.L., Awad, H.A.: 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35, 4026–4034 (2014)

    Article  Google Scholar 

  3. Costa-Pinto, A.R., Reis, R.L., Neves, N.M.: Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng. Part B Rev. 17, 331–347 (2011)

    Article  Google Scholar 

  4. Hollister, S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4, 518–524 (2005)

    Article  Google Scholar 

  5. Ng, K.W., Hutmacher, D.W., Schantz, J.T., Ng, C.S., Too, H.P., Lim, T.C., Phan, T.T., Teoh, S.H.: Evaluation of ultra-thin poly(ε-caprolactone) films for tissue-engineered skin. Tissue Eng. 7, 441–455 (2011)

    Article  Google Scholar 

  6. Moroni, L., de Wijn, J.R., van Blitterswijk, C.A.: Three-dimensional fiber-deposited PEOT/PBT copolymer scaffolds for tissue engineering: influence of porosity, molecular network mesh size and swelling in aqueous media on dynamic mechanical properties. J. Biomed. Mater. Res. A 75, 957–965 (2005)

    Article  Google Scholar 

  7. De Santis, R., D’Amora, U., Russo, T., Ronca, A., Gloria, A., Ambrosio, L.: 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds. J. Mater. Sci. Mater. Med. 26, 250 (2015)

    Article  Google Scholar 

  8. Martorelli, M., Ausiello, P., Morrone, R.: A new method to assess the accuracy of a cone beam computed tomography scanner by using a non-contact reverse engineering technique. J. Dent. 42(4), 460–465 (2014)

    Article  Google Scholar 

  9. Giordano, M., Ausiello, P., Martorelli, M., Sorrentino, R.: Reliability of computer designed surgical guides in six implant rehabilitations with two years follow-up. Dental. Mater. 28(9), e168–e177 (2012)

    Article  Google Scholar 

  10. Ausiello, P., Ciaramella, S., Fabianelli, A., Gloria, A., Martorelli, M., Lanzotti, A., Watts, D.C.: Mechanical behavior of bulk direct composite versus block composite and lithium disilicate indirect Class II restorations by CAD-FEM modeling. Dent. Mater. 33(6), 690–701 (2017)

    Article  Google Scholar 

  11. De Santis, R., Gloria, A., Maietta, S., Martorelli, M., De Luca, A., Spagnuolo, G., Riccitiello, F., Rengo, S.: Mechanical and thermal properties of dental composites cured with CAD/CAM assisted solid-state laser. Materials 11, 504 (2018)

    Article  Google Scholar 

  12. Sun, H., Zhu, F., Hu, Q., Krebsbach, P.H.: Controlling stem cell-mediated bone regeneration through tailored mechanical properties of collagen scaffolds. Biomaterials 35, 1176–1184 (2014)

    Article  Google Scholar 

  13. De Santis, R., Russo, A., Gloria, A., D’Amora, U., Russo, T., Panseri, S., Sandri, M., Tampieri, A., Marcacci, M., Dediu, V.A., Wilde, C.J., Ambrosio, L.: Towards the design of 3D fiber-deposited poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J. Biomed. Nanotechnol. 11(7), 1236–1246 (2015)

    Article  Google Scholar 

  14. Xiaolan, B., Hadjiargyrou, M., Di Masi, E., Meng, Y., Simon, M., Tan, Z., Rafailovich, M.H.: The role of moderate static magnetic fields on biomineralization of osteoblasts on sulfonated polystyrene films. Biomaterials 32, 7831–7838 (2011)

    Article  Google Scholar 

  15. Ross, S.M.: Combined DC and ELF magnetic fields can alter cell proliferation. Bioelectromagnetics 11, 27–36 (1990)

    Article  Google Scholar 

  16. Hashimoto, Y., Kawasumi, M., Saito, M.: Effect of static magnetic field on cell migration. Electr. Eng. Jpn. 160, 46–52 (2007)

    Article  Google Scholar 

  17. Kotani, H., Kawaguchi, H., Shimaoka, T., Iwasaka, M., Ueno, S., Ozawa, H., Nakamura, K., Hoshi, K.: Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J. Bone Min. Res. 17, 1814–1821 (2002)

    Article  Google Scholar 

  18. De Santis, R., Gloria, A., Russo, T., D’Amora, U., Zeppetelli, S., Tampieri, A., Herrmannsdörfer, T., Ambrosio, L.: A route toward the development of 3D magnetic scaffolds with tailored mechanical and morphological properties for hard tissue regeneration: Preliminary study. Virtual Phys. Prototyp. 6(4), 189–195 (2011)

    Article  Google Scholar 

  19. Domingos, M., Chiellini, F., Gloria, A., Ambrosio, L., Bartolo, P., Chiellini, E.: Effect of process parameters on the morphological and mechanical properties of 3D Bioextruded poly(ε-caprolactone) scaffolds. Rapid Prototyp. J. 18, 56–67 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Martorelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gloria, A., Domingos, M., Maietta, S., Martorelli, M., Lanzotti, A. (2020). Optimization Design Strategy for Additive Manufacturing Process to Develop 3D Magnetic Nanocomposite Scaffolds. In: Rizzi, C., Andrisano, A.O., Leali, F., Gherardini, F., Pini, F., Vergnano, A. (eds) Design Tools and Methods in Industrial Engineering. ADM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-31154-4_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31154-4_81

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31153-7

  • Online ISBN: 978-3-030-31154-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics