Skip to main content

Conceptual Design of a Functional Orthodontic Appliance for the Correction of Skeletal Class II Malocclusion

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

The current requests for continuous innovation represent a challenge in every industry as well as in the field of orthodontics. Aim of this work was to develop new concepts of a functional appliance for the correction of class II skeletal malocclusion through a systematic design methodology. Staring at the existing devices in this field, taking into account the literature and the patient’s needs, the customers’ requirements were identified by Quality Functional Deployment. Systematic methods such as morphological method, theory of inventive problem solving and other creative methods were used for generating concepts some of which are presented at the end of the paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Papadopoulos, M.A.: Non-compliance approaches for management of Class II malocclusion. In: Skeletal Anchorage in Orthodontic Treatment of Class II Malocclusion, pp. 6–21. Elsevier (2015). https://doi.org/10.1016/B978-0-7234-3649-2.00002-6

  2. Bishara, S.E., Ziaja, R.R.: Functional appliances: a review. Am. J. Orthod. Dentofac. Orthop. 95, 250–258 (1989). https://doi.org/10.1016/0889-5406(89)90055-3

    Article  Google Scholar 

  3. Moro, A., Borges, S.W., Spada, P.P., Morais, N.D., Correr, G.M., Chaves Jr., C.M., Cevidanes, L.H.S.: Twenty-year clinical experience with fixed functional appliances. Dental Press J. Orthod. 23, 87–109 (2018). https://doi.org/10.1590/2177-6709.23.2.087-109.sar

    Article  Google Scholar 

  4. Proffit, W.R., Fields Jr, H.W., Sarver, D.M.: Contemporary orthodontics. Elsevier Health Sciences, Amsterdam (2006)

    Google Scholar 

  5. Pancherz, H.: Treatment of Class II malocclusions by jumping the bite with the Herbst appliance A cephalometric investigation. Am. J. Orthod. 76, 423–442 (1979). https://doi.org/10.1016/0002-9416(79)90227-6

    Article  Google Scholar 

  6. Schiavoni, R.: The Herbst appliance updated. Prog. Orthod. 12, 149–160 (2011). https://doi.org/10.1016/j.pio.2011.06.004

    Article  Google Scholar 

  7. Bishara, S.E., Saunders, W.B.: Textbook of Orthodontics. Saunders Book Company, Collingwood (2001)

    Google Scholar 

  8. Redazione DentalAcademy: Narval CC. http://www.dentaljournal.it/narval-cc/

  9. Ullman, D.G.: The Mechanical Design Process. McGraw-Hill, New York (2010)

    Google Scholar 

  10. Ulrich, K.T., Eppinger, S.D.: Product Design and Development. McGraw-Hill, New York (2012). https://doi.org/10.1016/B978-0-7506-8985-4.00002-4

    Book  Google Scholar 

  11. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H.: Engineering Design. Springer, London (2007). https://doi.org/10.1007/978-1-84628-319-2

    Book  Google Scholar 

  12. Cross, N.: Engineering design methods - Strategies for Product Design (2000)

    Google Scholar 

  13. Akao, Y.: QFD: Quality Function Deployment - Integrating Customer Requirements into Product Design (1990). ISBN: 9781563273131

    Google Scholar 

  14. Chechurin, L., Borgianni, Y.: Understanding TRIZ through the review of top cited publications. Comput. Ind. 82, 119–134 (2016). https://doi.org/10.1016/j.compind.2016.06.002

    Article  Google Scholar 

  15. Altshuller, G.S.: The Innovation Algorithm: TRIZ Systematic Innovation and Technical Creativity. Technical Innovation Center, Worcester (2000)

    Google Scholar 

  16. Cascini, G.: TRIZ-based anticipatory design of future products and processes. J. Integr. Des. Process Sci. 16, 29–63 (2012). https://doi.org/10.3233/jid-2012-0005

    Article  Google Scholar 

  17. Mann, D.: An introduction to triz: the theory of inventive problem solving. Creat. Innov. Manag. 10, 123–125 (2001). https://doi.org/10.1111/1467-8691.00212

    Article  Google Scholar 

  18. Spreafico, C., Russo, D.: TRIZ industrial case studies: a critical survey. Procedia CIRP. 39, 51–56 (2016). https://doi.org/10.1016/j.procir.2016.01.165

    Article  Google Scholar 

  19. Ilevbare, I.M., Probert, D., Phaal, R.: A review of TRIZ, and its benefits and challenges in practice. Technovation 33, 30–37 (2013). https://doi.org/10.1016/j.technovation.2012.11.003

    Article  Google Scholar 

  20. Chechurin, L.: TRIZ in Science Reviewing Indexed Publications. Procedia CIRP 39, 156–165 (2016). https://doi.org/10.1016/j.procir.2016.01.182

    Article  Google Scholar 

  21. Benyus, J.M.: Biomimicry: Innovation Inspired by Nature. Morrow, New York (1997)

    Google Scholar 

  22. Institute, B.: AskNature. https://asknature.org/

  23. Vincent, J.F., Bogatyreva, O.A., Bogatyrev, N.R., Bowyer, A., Pahl, A.-K.: Biomimetics: its practice and theory. J. R. Soc. Interface 3, 471–482 (2006). https://doi.org/10.1098/rsif.2006.0127

    Article  Google Scholar 

  24. Hua, Z., Yang, J., Coulibaly, S., Zhang, B.: Integration TRIZ with problem-solving tools: a literature review from 1995 to 2006. Int. J. Bus. Innov. Res. 1, 111 (2006). https://doi.org/10.1504/IJBIR.2006.011091

    Article  Google Scholar 

  25. Frillici, F.S., Fiorineschi, L., Cascini, G.: Linking TRIZ to conceptual design engineering approaches. Procedia Eng. 131, 1031–1040 (2015). https://doi.org/10.1016/j.proeng.2015.12.421

    Article  Google Scholar 

  26. Donnici, G., Frizziero, L., Francia, D., Liverani, A., Caligiana, G.: TRIZ method for innovation applied to an hoverboard. Cogent Eng. 5, 1–24 (2018). https://doi.org/10.1080/23311916.2018.1524537

    Article  Google Scholar 

  27. Yamashina, H., Ito, T., Kawada, H.: Innovative product development process by integrating QFD and TRIZ. Int. J. Prod. Res. 40, 1031–1050 (2002). https://doi.org/10.1080/00207540110098490

    Article  MATH  Google Scholar 

  28. Fiorineschi, L., Frillici, F.S., Rotini, F.: Enhancing functional decomposition and morphology with TRIZ: literature review. Comput. Ind. 94, 1–15 (2018). https://doi.org/10.1016/j.compind.2017.09.004

    Article  Google Scholar 

  29. Mann, D.: Common Ground – Integrating The World’s Most Effective Creative Design Strategies. http://120.55.91.217/wp-content/uploads/soft/100921/6-100921130335.pdf

Download references

Acknowledgments

This project was partially funded by the grant “FSE 2105-51-11-2018” by Regione Veneto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Grigolato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grigolato, L. et al. (2020). Conceptual Design of a Functional Orthodontic Appliance for the Correction of Skeletal Class II Malocclusion. In: Rizzi, C., Andrisano, A.O., Leali, F., Gherardini, F., Pini, F., Vergnano, A. (eds) Design Tools and Methods in Industrial Engineering. ADM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-31154-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31154-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31153-7

  • Online ISBN: 978-3-030-31154-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics