Skip to main content

Subspace Methods

  • Chapter
  • First Online:

Part of the book series: Advanced Studies in Theoretical and Applied Econometrics ((ASTA,volume 52))

Abstract

With increasingly many variables available to macroeconomic forecasters, dimension reduction methods are essential to obtain accurate forecasts. Subspace methods are a new class of dimension reduction methods that have been found to yield precise forecasts when applied to macroeconomic and financial data. In this chapter, we review three subspace methods: subset regression, random projection regression, and compressed regression. We provide currently available theoretical results, and indicate a number of open avenues. The methods are illustrated in various settings relevant to macroeconomic forecasters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achlioptas, D. (2003). Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4), 671–687.

    Article  Google Scholar 

  • Bai, J., & Ng, S. (2006). Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions. Econometrica, 74(4), 1133–1150.

    Article  Google Scholar 

  • Bai, J., & Ng, S. (2008). Forecasting economic time series using targeted predictors. Journal of Econometrics, 146(2), 304–317.

    Article  Google Scholar 

  • Bay, S. D. (1998). Combining nearest neighbor classifiers through multiple feature subsets. In Proceedings of the Fifteenth International Conference on Machine Learning ICML (vol. 98, pp. 37–45). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Bingham, E., & Mannila, H. (2001). Random projection in dimensionality reduction: Applications to image and text data. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 245–250). New York: ACM.

    Chapter  Google Scholar 

  • Boot, T., & Nibbering, D. (2019). Forecasting using random subspace methods. Journal of Econometrics, 209(2), 391–406. https://doi.org/10.1016/j.jeconom.2019.01.009.

    Article  Google Scholar 

  • Boutsidis, C., Zouzias, A., Mahoney, M. W., & Drineas, P. (2015). Randomized dimensionality reduction for k-means clustering. IEEE Transactions on Information Theory, 61(2), 1045–1062.

    Article  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

    Google Scholar 

  • Breiman, L. (1999). Pasting small votes for classification in large databases and on-line. Machine Learning, 36(1–2), 85–103.

    Article  Google Scholar 

  • Bryll, R., Gutierrez-Osuna, R., & Quek, F. (2003). Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition, 36(6), 1291–1302.

    Article  Google Scholar 

  • Cannings, T. I., & Samworth, R. J. (2017). Random-projection ensemble classification. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(4), 959–1035.

    Article  Google Scholar 

  • Chiong, K. X., & Shum, M. (2018). Random projection estimation of discrete-choice models with large choice sets. Management Science, 65, 1–457.

    Google Scholar 

  • Claeskens, G., Magnus, J. R., Vasnev, A. L., & Wang, W. (2016). The forecast combination puzzle: a simple theoretical explanation. International Journal of Forecasting, 32(3), 754–762.

    Article  Google Scholar 

  • Dasgupta, S., & Gupta, A. (2003). An elementary proof of a theorem of Johnson and Lindenstrauss. Random Structures & Algorithms, 22(1), 60–65.

    Article  Google Scholar 

  • Elliott, G., Gargano, A., & Timmermann, A. (2013). Complete subset regressions. Journal of Econometrics, 177(2), 357–373.

    Article  Google Scholar 

  • Elliott, G., Gargano, A., & Timmermann, A. (2015). Complete subset regressions with large-dimensional sets of predictors. Journal of Economic Dynamics and Control, 54, 86–110.

    Article  Google Scholar 

  • Elliott, G., & Timmermann, A. (2013). Handbook of economic forecasting. Amsterdam: Elsevier.

    Google Scholar 

  • Fradkin, D., & Madigan, D. (2003). Experiments with random projections for machine learning. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 517–522). New York: ACM.

    Chapter  Google Scholar 

  • Frieze, A., Kannan, R., & Vempala, S. (2004). Fast Monte-Carlo algorithms for finding low-rank approximations. Journal of the Association for Computing Machinery, 51(6), 1025–1041.

    Article  Google Scholar 

  • Garcia, M. G., Medeiros, M. C., & Vasconcelos, G. F. (2017). Real-time inflation forecasting with high-dimensional models: The case of Brazil. International Journal of Forecasting, 33(3), 679–693.

    Article  Google Scholar 

  • Gillen, B. J. (2016). Subset optimization for asset allocation. Social Science Working Paper, 1421, California Institute of Technology, Pasadena

    Google Scholar 

  • Guhaniyogi, R., & Dunson, D. B. (2015). Bayesian compressed regression. Journal of the American Statistical Association, 110(512), 1500–1514.

    Article  Google Scholar 

  • Hansen, B. E. (2010). Averaging estimators for autoregressions with a near unit root. Journal of Econometrics, 158(1), 142–155.

    Article  Google Scholar 

  • Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844.

    Article  Google Scholar 

  • Johnson, W. B., & Lindenstrauss, J. (1984). Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathematics, 26(189–206), 1.

    Google Scholar 

  • Kabán, A. (2014). New bounds on compressive linear least squares regression. In Artificial intelligence and statistics (pp. 448–456). Boston: Addison-Wesley.

    Google Scholar 

  • Koop, G., Korobilis, D., & Pettenuzzo, D. (2019). Bayesian compressed vector autoregressions. Journal of Econometrics, 210(1), 135–154.

    Article  Google Scholar 

  • Leroux, M., Kotchoni, R., & Stevanovic, D. (2017). Forecasting economic activity in data-rich environment. University of Paris Nanterre, EconomiX.

    Google Scholar 

  • Li, P., Hastie, T. J., & Church, K. W. (2006). Very sparse random projections. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 287–296). New York: ACM.

    Chapter  Google Scholar 

  • Mahoney, M. W., & Drineas, P. (2009). CUR matrix decompositions for improved data analysis. Proceedings of the National Academy of Sciences, 106(3), 697–702.

    Article  Google Scholar 

  • Maillard, O., & Munos, R. (2009). Compressed least-squares regression. In Advances in neural information processing systems (pp. 1213–1221). Cambridge: MIT Press.

    Google Scholar 

  • McCracken, M. W., & Ng, S. (2016). FRED-MD: A monthly database for macroeconomic research. Journal of Business & Economic Statistics, 34(4), 574–589.

    Article  Google Scholar 

  • Meligkotsidou, L., Panopoulou, E., Vrontos, I. D., & Vrontos, S. D. (2019). Out-of-sample equity premium prediction: A complete subset quantile regression approach. European Journal of Finance, 1–26.

    Google Scholar 

  • Ng, S. (2013). Variable selection in predictive regressions. Handbook of Economic Forecasting, 2(Part B), 752–789.

    Google Scholar 

  • Pick, A., & Carpay, M. (2018). Multi-step forecasting with large vector autoregressions. Working Paper.

    Google Scholar 

  • Schneider, M. J., & Gupta, S. (2016). Forecasting sales of new and existing products using consumer reviews: A random projections approach. International Journal of Forecasting, 32(2), 243–256.

    Article  Google Scholar 

  • Shen, W., & Wang, J. (2017). Portfolio selection via subset resampling. In Thirty-First AAAI Conference on Artificial Intelligence (pp. 1517–1523).

    Google Scholar 

  • Slawski, M. et al. (2018). On principal components regression, random projections, and column subsampling. Electronic Journal of Statistics, 12(2), 3673–3712.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. W. (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460), 1167–1179.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. W. (2006). Forecasting with many predictors. Handbook of economic forecasting (vol. 1, pp. 515–554). Amsterdam: Elsevier.

    Google Scholar 

  • Thanei, G.-A., Heinze, C., & Meinshausen, N. (2017). Random projections for large-scale regression. In Big and complex data analysis (pp. 51–68). Berlin: Springer.

    Chapter  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58,(1), 267–288.

    Google Scholar 

  • Timmermann, A. (2006). Forecast combinations. In Handbook of economic forecasting (vol. 1, pp. 135–196). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Vempala, S. S. (2005). The random projection method.Series in discrete mathematics and theoretical computer science. Providence: American Mathematical Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Boot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boot, T., Nibbering, D. (2020). Subspace Methods. In: Fuleky, P. (eds) Macroeconomic Forecasting in the Era of Big Data. Advanced Studies in Theoretical and Applied Econometrics, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-31150-6_9

Download citation

Publish with us

Policies and ethics