Skip to main content

Principal Component and Static Factor Analysis

  • Chapter
  • First Online:
Macroeconomic Forecasting in the Era of Big Data

Part of the book series: Advanced Studies in Theoretical and Applied Econometrics ((ASTA,volume 52))

Abstract

Factor models are widely used in macroeconomic forecasting. With large datasets, factor models are particularly useful due to their intrinsic dimension reduction. In this chapter, we consider the forecasting problem using factor models, with special consideration to large datasets. In factor model estimation, we focus on principal component methods, and show how the estimated factors can be used to assist forecasting. Machine learning methods are discussed to encompass the high-dimensional features of large factor models. We consider policy evaluation as a nowcasting problem and show how factor analysis can be used to perform counter-factual outcome prediction in complicated models with observational data. The usage of all these techniques is illustrated by empirical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Another popular forecasting strategy is the so-called “rolling” scheme, which, in each step, drops the earliest observation in the current forecast window while adding a new one. The relative performance between the recursive and rolling schemes can be found in, for example, Kim and Swanson (2018).

  2. 2.

    Readers need to be cautious to understand and interpret the results of comparing different forecasting methods. For instance, each entry in Table 8.5 corresponds to the best performance of a given method, say PCA, ICA, or SPCA, across a variety of machine learning models, which are used to forecast the target variables using the extracted factors. This implies that the reported forecasting errors in the table already take into account the data to forecast, due to the selection over the machine learning models. However, the relative forecasting performances across PCA, ICA, and SPCA may be different when we “truly” forecast out of sample.

References

  • Back, A. D., & Weigend, A. S. (1997). A first application of independent component analysis to extracting structure from stock returns. International Journal of Neural Systems, 8(4), 473–484.

    Article  Google Scholar 

  • Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71(1), 135–171.

    Article  Google Scholar 

  • Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica, 77(4), 1229–1279.

    Article  Google Scholar 

  • Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191–221.

    Article  Google Scholar 

  • Bai, J., & Ng, S. (2006). Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions. Econometrica, 74(4), 1133–1150.

    Article  Google Scholar 

  • Bai, J., & Ng, S. (2008). Forecasting economic time series using targeted predictors. Journal of Econometrics, 146(2), 304–317.

    Article  Google Scholar 

  • Bai, J., & Ng, S. (2009). Boosting diffusion indices. Journal of Applied Econometrics, 24(4), 607–629.

    Article  Google Scholar 

  • Bartlett, M. S., Movellan, J. R., & Sejnowski, T. J. (2002). Face recognition by independent component analysis. IEEE Transactions on Neural Networks, 13(6), 1450–1464.

    Article  Google Scholar 

  • Brown, G. D., Yamada, S., & Sejnowski, T. J. (2001). Independent component analysis at the neural cocktail party. Trends in Neurosciences, 24(1), 54–63.

    Article  Google Scholar 

  • Cai, T. T., Ma, Z., & Wu, Y. (2013). Sparse PCA: Optimal rates and adaptive estimation. The Annals of Statistics, 41(6), 3074–3110.

    Article  Google Scholar 

  • Chun, H., & Keleş, S. (2010). Sparse partial least squares regression for simultaneous dimension reduction and variable selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(1), 3–25.

    Article  Google Scholar 

  • Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32(2), 407–499.

    Article  Google Scholar 

  • Firpo, S., & Possebom, V. (2018). Synthetic control method: Inference, sensitivity analysis and confidence sets. Journal of Causal Inference, 6(2), 1–26.

    Article  Google Scholar 

  • Fuentes, J., Poncela, P., & Rodríguez, J. (2015). Sparse partial least squares in time series for macroeconomic forecasting. Journal of Applied Econometrics, 30(4), 576–595.

    Article  Google Scholar 

  • Gobillon, L., & Magnac, T. (2016). Regional policy evaluation: Interactive fixed effects and synthetic controls. Review of Economics and Statistics, 98(3), 535–551.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Berlin: Springer.

    Book  Google Scholar 

  • Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: The lasso and generalizations. London: Chapman and Hall/CRC.

    Book  Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6), 417–441.

    Article  Google Scholar 

  • Hsiao, C., Ching, H. S., & Wan, S. K. (2012). A panel data approach for program evaluation: Measuring the benefits of political and economic integration of Hong Kong with mainland China. Journal of Applied Econometrics, 27(5), 705–740.

    Article  Google Scholar 

  • Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634.

    Article  Google Scholar 

  • Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430.

    Article  Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis. Berlin: Springer.

    Google Scholar 

  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202.

    Article  Google Scholar 

  • Kim, D., & Oka, T. (2014). Divorce law reforms and divorce rates in the USA: An interactive fixed-effects approach. Journal of Applied Econometrics, 29(2), 231–245.

    Article  Google Scholar 

  • Kim, H. H., & Swanson, N. R. (2018). Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods. International Journal of Forecasting, 34(2), 339–354.

    Article  Google Scholar 

  • Li, H., Li, Q., & Shi, Y. (2017). Determining the number of factors when the number of factors can increase with sample size. Journal of Econometrics, 197(1), 76–86.

    Article  Google Scholar 

  • Muirhead, R. J. (2009). Aspects of multivariate statistical theory. Hoboken: Wiley.

    Google Scholar 

  • Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559–572.

    Article  Google Scholar 

  • Robbins, M. W., Saunders, J., & Kilmer B. (2017). A framework for synthetic control methods with high-dimensional, micro-level data: Evaluating a neighborhood-specific crime intervention. Journal of the American Statistical Association, 112(517), 109–126.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. W. (1999). Forecasting inflation. Journal of Monetary Economics, 44(2), 293–335.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. W. (2002a). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460), 1167–1179.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. W. (2002b). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics, 20(2), 147–162.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. W. (2012). Generalized shrinkage methods for forecasting using many predictors. Journal of Business & Economic Statistics, 30(4), 481–493.

    Article  Google Scholar 

  • Stone, J. V. (2004). Independent component analysis: A tutorial introduction. Cambridge: MIT Press.

    Book  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B, 58(1), 267–288.

    Google Scholar 

  • Tong, L., Liu, R. W., Soon, V. C., & Huang, Y. F. (1991). Indeterminacy and identifiability of blind identification. IEEE Transactions on Circuits and Systems, 38(5), 499–509.

    Article  Google Scholar 

  • Xu, Y. (2017). Generalized synthetic control method: Causal inference with interactive fixed effects models. Political Analysis, 25(1), 57–76.

    Article  Google Scholar 

  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 301–320.

    Article  Google Scholar 

  • Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2), 265–286.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yike Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cao, J., Gu, C., Wang, Y. (2020). Principal Component and Static Factor Analysis. In: Fuleky, P. (eds) Macroeconomic Forecasting in the Era of Big Data. Advanced Studies in Theoretical and Applied Econometrics, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-31150-6_8

Download citation

Publish with us

Policies and ethics