Skip to main content

Creation and Detection of Molecular Schrödinger Cat States: Iodine in Cryogenic Krypton Observed via Four-Wave-Mixing Optics

  • Conference paper
  • First Online:
Book cover Advances in Open Systems and Fundamental Tests of Quantum Mechanics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 237))

  • 427 Accesses

Abstract

This contribution addresses the experimental observation and  theoretical interpretation of environment-induced decoherence of molecular Schrödinger cat states, as observed for dihalogen molecules embedded in a cryogenic rare gas environment. We specifically address a three-pulse experiment performed on an \(\mathrm {I_2}\)-krypton system,  involving the coherent creation, by two distinct optical pulses, of a vibrational Schrödinger cat state and its observation through a third pulse which induces a Raman scattering signal that reports on the time-evolving coherence.  Full quantum-mechanical simulations of the combined molecule-plus-environment system under the influence of the external fields are reported, making use of advanced wave packet propagation techniques. As a key quantity, a time-evolving subsystem coherence matrix is characterized, and its evolution as a function of the state preparation is discussed. In line with the experiment, it is found that long-lived coherences can be observed, even though the system-bath coupling is comparatively strong. The system–environment interactions fall into a non-Markovian regime and are determined by a few specific environmental modes that strongly interact with the chromophore. A perspective is given on general implications of these observations for molecular systems embedded in a matrix or solvent environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.  Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995)

    Google Scholar 

  2. D. Segale, M. Karavitis, E. Fredj, V.A. Apkarian, J. Chem. Phys. 122, 111104 (2005)

    Article  ADS  Google Scholar 

  3. D. Segale, V.A. Apkarian, J. Chem. Phys. 135, 024203 (2011)

    Article  ADS  Google Scholar 

  4. A. Caldeira, A. Leggett, Ann. Phys. 149, 374 (1983)

    Article  ADS  Google Scholar 

  5. Y.R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984)

    Google Scholar 

  6. D.M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003)

    Article  ADS  Google Scholar 

  7. D. Picconi, J.A. Cina, I. Burghardt, J. Chem. Phys. 150, 064111 (2019a)

    Article  ADS  Google Scholar 

  8. D. Picconi, J.A. Cina, I. Burghardt, J. Chem. Phys. 150, 064112 (2019b)

    Article  ADS  Google Scholar 

  9. D.  Picconi, I. Burghardt, Faraday Discuss (2019). https://doi.org/10.1039/C9FD00065H

  10. V.A. Apkarian, N. Schwentner, Chem. Rev. 99, 1481 (1999)

    Article  Google Scholar 

  11. M. Gühr, M. Bargheer, M. Fushitani, T. Kiljunen, N. Schwentner, Phys. Chem. Chem. Phys. 9, 779 (2007)

    Article  Google Scholar 

  12. A.V. Davis, R. Wester, A.E. Bragg, D.M. Neumark, J. Chem. Phys. 119, 2020 (2003)

    Article  ADS  Google Scholar 

  13. A.L. Harris, J.K. Brown, C.B. Harris, Ann. Rev. Phys. Chem. 39, 341 (1988)

    Article  ADS  Google Scholar 

  14. A. Materny, C. Lienau, A.H. Zewail, J. Phys. Chem. 100, 18650 (1996)

    Article  Google Scholar 

  15. J. Yang, M. Gühr, X. Shen, R. Li, T. Vecchione, R. Coffee, J. Corbett, A. Fry, N. Hartmann, C. Hast, K. Hegazy, K. Jobe, I. Makasyuk, J. Robinson, M.S. Robinson, S. Vetter, S. Weathersby, C. Yoneda, X. Wang, M. Centurion, Phys. Rev. Lett. 117, 153002 (2016)

    Article  ADS  Google Scholar 

  16. J.M. Glownia, A. Natan, J.P. Cryan, R. Hartsock, M. Kozina, M.P. Minitti, S. Nelson, J. Robinson, T. Sato, T. van Driel, G. Welch, C. Weninger, D. Zhu, P.H. Bucksbaum, Phys. Rev. Lett. 117, 153003 (2016)

    Article  ADS  Google Scholar 

  17. M. Gühr, M. Bargheer, N. Schwentner, Phys. Rev. Lett. 91, 085504 (2003)

    Article  ADS  Google Scholar 

  18. M. Bargheer, M. Gühr, P. Dietrich, N. Schwentner, Phys. Chem. Chem. Phys. 4, 75 (2002)

    Article  Google Scholar 

  19. M.H. Beck, A. Jäckle, G.A. Worth, H.-D. Meyer, Phys. Rep. 324, 1 (2000)

    Article  ADS  Google Scholar 

  20. H.-D. Meyer, F. Gatti, G.A. Worth, Multidimensional Quantum Dynamics: MCTDH Theory and Applications (Wiley-VHC Verlag GmbH & Co., Weinheim, 2009)

    Google Scholar 

  21. I. Burghardt, H.-D. Meyer, L.S. Cederbaum, J. Chem. Phys. 111, 2927 (1999)

    Article  ADS  Google Scholar 

  22. I. Burghardt, M. Nest, G.A. Worth, J. Chem. Phys. 119, 5364 (2003)

    Article  ADS  Google Scholar 

  23. P.A. Kovac, J.A. Cina, J. Chem. Phys. 147, 224112 (2017)

    Article  ADS  Google Scholar 

  24. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  Google Scholar 

  25. S. Mukamel, C. Ciordas-Ciurdariu, V. Khidekel, Adv. Chem. Phys. 101, 345 (1997)

    Article  Google Scholar 

  26. M.F. Gelin, D.S. Kosov, Chem. Phys. 347, 177 (2008)

    Article  Google Scholar 

  27. I. Burghardt, K. Giri, G.A. Worth, J. Chem. Phys. 129, 174104 (2008)

    Article  ADS  Google Scholar 

  28. A. Kenfack, K. Życzkowski, J. Opt. B: Quantum Semiclass. Opt. 6, 396 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  29. T.A.A. Oliver, R. Soc, Open Sci. 5, 171425 (2018)

    Google Scholar 

  30. T.A.A. Oliver, N.H.C. Lewis, G.R. Fleming, Proc. Nat. Acad. Soc. 111, 10061 (2014)

    Article  ADS  Google Scholar 

  31. P.M. Kraus, M. Zürch, S.K. Cushing, D.M. Neumark, S.R. Leone, Nat. Rev. Chem. 2, 82 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We most gratefully acknowledge discussions with Jeff Cina and Ara Apkarian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Burghardt .

Editor information

Editors and Affiliations

Appendix A: Explicit Form of the B State PES

Appendix A: Explicit Form of the B State PES

The protocol for the construction of the B state PES has been described in detail in [7]. Briefly, classical trajectories evolving in the B state are initialized by sampling the positions and momenta \(\{ q_i, p_i \}\) from the zero-temperature Wigner distribution associated to the X state minimum,

$$\begin{aligned} W_0(q_i,p_i) = \frac{1}{\pi }\exp \left( - q_i^2 - p_i^2 \right) \ , \end{aligned}$$
(7.30)

which mimics an instantaneous \(B \longleftarrow X\) excitation.

A subset of 23 bath modes, which undergo the largest displacements from the initial average phase space position, \(q_i = p_i = 0\), is identified and explicitly included in the Hamiltonian. The potential energy surfaces evaluated at geometries sampled along the trajectories are finally fitted to anharmonic polynomial functions so that the terms of (7.2) take the explicit form:

$$\begin{aligned} \mathcal {H}^{(\alpha )}_\mathrm {s} = -\frac{\hbar \omega _1}{2} \frac{\partial ^2}{\partial q_1^2} + \sum _{r = 0}^6 C_{0r}^{(\alpha )} q_1^r \ , \end{aligned}$$
(7.31a)
$$\begin{aligned} \mathcal {H}^{(\alpha )}_\mathrm {b} = -\sum _{i = 2}^{24} \frac{\hbar \omega _i}{2} \frac{\partial ^2}{\partial q_i^2} + \sum _{i = 2}^{24} C_{i0}^{(\alpha )} q_i + \sum _{i,j = 2}^{24} C_{ij0}^{(\alpha )} q_i q_j + \sum _{i,j = 2}^{24} C_{iij0}^{(\alpha )} q_i^2 q_j + \sum _{i = 2}^{24} C_{iiii0}^{(\alpha )} q_i^4 \ , \end{aligned}$$
(7.31b)
$$\begin{aligned} \mathcal {H}^{(\alpha )}_\mathrm {sb} = \sum _{i = 2}^{24} \sum _{r = 1}^3 C_{ir}^{(\alpha )} q_1^r q_i + \sum _{i,j = 2}^{24} \sum _{r = 1}^2 C_{ijr}^{(\alpha )} q_1^r q_i q_j + \sum _{i,j = 2}^{24} C_{iij1}^{(\alpha )} q_1 q_i^2 q_j \ . \end{aligned}$$
(7.31c)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Picconi, D., Burghardt, I. (2019). Creation and Detection of Molecular Schrödinger Cat States: Iodine in Cryogenic Krypton Observed via Four-Wave-Mixing Optics. In: Vacchini, B., Breuer, HP., Bassi, A. (eds) Advances in Open Systems and Fundamental Tests of Quantum Mechanics. Springer Proceedings in Physics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-030-31146-9_7

Download citation

Publish with us

Policies and ethics