Skip to main content

Revealing Correlations Between a System and an Inaccessible Environment

  • Conference paper
  • First Online:
Advances in Open Systems and Fundamental Tests of Quantum Mechanics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 237))

  • 408 Accesses

Abstract

How can we detect that our local,  controllable quantum system is correlated with some other inaccessible environmental system? The local detection method developed in recent years allows to realize a dynamical witness for correlations without requiring knowledge of or access to the environment that is correlated with the local accessible quantum system. Here, we provide a brief summary of the theoretical method and recent experimental studies with single photons and trapped ions coupled to increasingly complex environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    Google Scholar 

  2. M. Gessner, H.-P. Breuer, A. Buchleitner, The Local Detection Method: Dynamical Detection of Quantum Discord with Local Operations, eds. by F.F. Fanchini, D.O. Soares Pinto, G. Adesso. Lectures on General Quantum Correlations and their Applications (Springer International Publishing, Berlin, 2017), pp. 275–307, https://doi.org/10.1007/978-3-319-53412-1; https://doi.org/10.1007/978-3-319-53412-1_14

  3. M. Gessner, Dynamics and Characterization of Composite Quantum Systems (Springer International Publishing, Berlin, 2017), https://doi.org/10.1007/978-3-319-44459-8

  4. E.-M. Laine, J. Piilo, H.-P. Breuer, Witness for initial system-environment correlations in open-system dynamics. Eur. Lett. 92, 60010 (2010), https://doi.org/10.1209/0295-5075/92/60010

  5. M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  6. M.B. Ruskai, Beyond strong subadditivity? improved bounds on the contraction of generalized relative entropy. Rev. Math. Phys. 6, 147 (1994), https://doi.org/10.1142/S0129055X94000407

  7. H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Colloquium: non-markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016), https://doi.org/10.1103/RevModPhys.88.021002

  8. M. Gessner, M. Ramm, T. Pruttivarasin, A. Buchleitner, H.-P. Breuer, H. Häffner, Local detection of quantum correlations with a single trapped ion. Nat. Phys. 10, 105 (2014), https://doi.org/10.1038/nphys2829

  9. M. Gessner, H.-P. Breuer, Detecting nonclassical system-environment correlations by local operations. Phys. Rev. Lett. 107, 180402 (2011), https://doi.org/10.1103/PhysRevLett.107.180402

  10. M. Gessner, H.-P. Breuer, Local witness for bipartite quantum discord. Phys. Rev. A 87, 042107 (2013), https://doi.org/10.1103/PhysRevA.87.042107

  11. M. Gessner, M. Ramm, H. Häffner, A. Buchleitner, H.-P. Breuer, Observing a quantum phase transition by measuring a single spin. Eur. Lett. 107, 40005 (2014), https://doi.org/10.1209/0295-5075/107/40005

  12. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012), https://doi.org/10.1103/RevModPhys.84.1655

  13. M. Gessner, E.-M. Laine, H.-P. Breuer, J. Piilo, Correlations in quantum states and the local creation of quantum discord. Phys. Rev. A 85, 052122 (2012), https://doi.org/10.1103/PhysRevA.85.052122

  14. D. Girolami, T. Tufarelli, G. Adesso, Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013), https://doi.org/10.1103/PhysRevLett.110.240402

  15. V. Madhok, A. Datta, Quantum discord as a resource in quantum communication. Int. J. Mod. Phys. B 27, 1245041 (2013), https://doi.org/10.1142/S0217979213450410

  16. A. Streltsov, H. Kampermann, D. Bruß, Linking quantum discord to entanglement in a measurement. Phys. Rev. Lett. 106, 160401 (2011). https://doi.org/10.1103/PhysRevLett.106.160401

  17. M. Piani, S. Gharibian, G. Adesso, J. Calsamiglia, P. Horodecki, A. Winter, Phys. Rev. Lett. 106, 220403 (2011), https://doi.org/10.1103/PhysRevLett.106.220403

  18. T.S. Cubitt, F. Verstraete, W. Dür, J.I. Cirac, Separable states can be used to distribute entanglement. Phys. Rev. Lett. 91, 037902 (2003), https://doi.org/10.1103/PhysRevLett.91.037902

  19. A. Streltsov, H. Kampermann, D. Bruß, Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012), https://doi.org/10.1103/PhysRevLett.108.250501

  20. T.K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012), https://doi.org/10.1103/PhysRevLett.109.070501

  21. A. Fedrizzi, M. Zuppardo, G.G. Gillett, M.A. Broome, M.P. Almeida, M. Paternostro, A.G. White, T. Paterek, Experimental distribution of entanglement with separable carriers. Phys. Rev. Lett. 111, 230504 (2013), https://doi.org/10.1103/PhysRevLett.111.230504

  22. C.E. Vollmer, D. Schulze, T. Eberle, V. Händchen, J. Fiurášek, R. Schnabel, Experimental entanglement distribution by separable states. Phys. Rev. Lett. 111, 230505 (2013), https://doi.org/10.1103/PhysRevLett.111.230505

  23. C. Peuntinger, V. Chille, L. Mišta Jr., N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, Distributing entanglement with separable states. Phys. Rev. Lett. 111, 230506 (2013), https://doi.org/10.1103/PhysRevLett.111.230506

  24. D. Girolami, A.M. Souza, V. Giovannetti, T. Tufarelli, J.G. Filgueiras, R.S. Sarthour, D.O. Soares-Pinto, I.S. Oliveira, G. Adesso, Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014), https://doi.org/10.1103/PhysRevLett.112.210401

  25. I. Chuang, M. Nielsen, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  26. M. Hayashi, Quantum Information Theory (Springer, Berlin, 2017), https://doi.org/10.1007/978-3-662-49725-8

  27. C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976)

    MATH  Google Scholar 

  28. G. Amato, H.-P. Breuer, B. Vacchini, Generalized trace distance approach to quantum non-Markovianity and detection of initial correlations. Phys. Rev. A 98, 012120 (2018), https://doi.org/10.1103/PhysRevA.98.012120

  29. S. Wißmann, B. Leggio, H.-P. Breuer, Detecting initial system-environment correlations: performance of various distance measures for quantum states. Phys. Rev. A 88, 022108 (2013), https://doi.org/10.1103/PhysRevA.88.022108

  30. M. Gessner, H.-P. Breuer, Generic features of the dynamics of complex open quantum systems: statistical approach based on averages over the unitary group. Phys. Rev. E 87, 042128 (2013), https://doi.org/10.1103/PhysRevE.87.042128

  31. B. Collins, P. Śniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264, 773 (2006), https://doi.org/10.1007/s00220-006-1554-3

  32. M. Žnidarič, C. Pineda, I. García-Mata, Non-Markovian behavior of small and large complex quantum systems. Phys. Rev. Lett. 107, 080404 (2011), https://doi.org/10.1103/PhysRevLett.107.080404

  33. M. Gessner, Initial correlations in open quantum systems, Diplomarbeit, Albert-Ludwigs-Universität Freiburg (2011)

    Google Scholar 

  34. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008), https://doi.org/10.1103/RevModPhys.80.517

  35. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  36. M.A. Caprio, P. Cejnar, F. Iachello, Excited state quantum phase transitions in many-body systems. Ann. Phys. (NY) 323, 1106 (2008), https://doi.org/10.1016/j.aop.2007.06.011

  37. M. Gessner, V.M. Bastidas, T. Brandes, A. Buchleitner, Semiclassical excited-state signatures of quantum phase transitions in spin chains with variable-range interactions. Phys. Rev. B 93, 155153 (2016), https://doi.org/10.1103/PhysRevB.93.155153

  38. A. Abdelrahman, O. Khosravani, M. Gessner, H.-P. Breuer, A. Buchleitner, D.J. Gorman, R. Masuda, T. Pruttivarasin, M. Ramm, P. Schindler, H. Häffner, Local probe of single phonon dynamics in warm ion crystals. Nat. Commun. 8, 15712 (2017), https://doi.org/10.1038/ncomms15712

  39. S. Cialdi, A. Smirne, M.G. Paris, S. Olivares, B. Vacchini, Two-step procedure to discriminate discordant from classical correlated or factorized states. Phys. Rev. A 90, 050301(R) (2014), https://doi.org/10.1103/PhysRevA.90.050301

  40. J.-S. Tang, Y.-T. Wang, G. Chen, Y. Zou, C.-F. Li, G.-C. Guo, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, M. Gessner, H.-P. Breuer, Experimental detection of polarization-frequency quantum correlations in a photonic quantum channel by local operations. Optica 2, 1014 (2015), https://doi.org/10.1364/OPTICA.2.001014

  41. T. Krisnanda, M. Zuppardo, M. Paternostro, T. Paterek, Revealing nonclassicality of inaccessible objects. Phys. Rev. Lett. 119, 120402 (2017), https://doi.org/10.1103/PhysRevLett.119.120402

  42. T. Krisnanda, C. Marletto, V. Vedral, M. Paternostro, T. Paterek, Probing quantum features of photosynthetic organisms. npj Quantum Inform. 4, 60 (2018), https://doi.org/10.1038/s41534-018-0110-2

  43. T. Krisnanda, R. Ganardi, S.-Y. Lee, J. Kim, T. Paterek, Detectingnondecomposability of time evolution via extreme gain of correlations. Phys. Rev. A 98, 052321 (2018), https://doi.org/10.1103/PhysRevA.98.052321

  44. T. Krisnanda, G.Y. Tham, M. Paternostro, T. Paterek, Observable quantum entanglement due to gravity. arXiv:1906.08808

Download references

Acknowledgements

This work was funded by the LabEx ENS-ICFP:ANR-10-LABX-0010/ANR-10-IDEX-0001-02 PSL*. M. Gessner would like to thank the organizers of the 684. WE-Heraeus-Seminar “Advances in open systems and fundamental tests of quantum mechanics” for being given the opportunity to present this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Gessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gessner, M., Breuer, HP. (2019). Revealing Correlations Between a System and an Inaccessible Environment. In: Vacchini, B., Breuer, HP., Bassi, A. (eds) Advances in Open Systems and Fundamental Tests of Quantum Mechanics. Springer Proceedings in Physics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-030-31146-9_5

Download citation

Publish with us

Policies and ethics