Skip to main content

ImmunoPET: The Future of Response Evaluation for Cancer Immunotherapy

  • Chapter
  • First Online:
Atlas of Response to Immunotherapy
  • 931 Accesses

Abstract

Immunotherapy treatments have demonstrated a wide variety of treatment response patterns, and noninvasive ways to monitor these responses are greatly needed. Molecular imaging, in particular using positron emission tomography (PET), has emerged as an attractive way to confront this problem. Using highly specific antibody probes, immunoPET has enabled clear visualization of many immunologically relevant markers in vivo in preclinical models, including checkpoint molecules, T-cell markers, and immune activation biomarkers. While clinical results have yet to be published, these emerging techniques are expected to have an impact for patients in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehlerding EB, England CG, McNeel DG, Cai W. Molecular imaging of immunotherapy targets in cancer. J Nucl Med. 2016;57(10):1487–92.

    Article  CAS  Google Scholar 

  2. Wei W, Jiang D, Ehlerding EB, Luo Q, Cai W. Noninvasive PET imaging of T cells. Trends Cancer. 2018;4(5):359–73.

    Article  Google Scholar 

  3. Mayer AT, Gambhir SS. The immunoimaging toolbox. J Nucl Med. 2018;59(8):1174–82.

    Article  CAS  Google Scholar 

  4. Brandt M, Cardinale J, Aulsebrook ML, Gasser G, Mindt TL. An overview of PET radiochemistry, part 2: radiometals. J Nucl Med. 2018;59(10):1500–6.

    Article  CAS  Google Scholar 

  5. Boros E, Holland JP. Chemical aspects of metal ion chelation in the synthesis and application antibody-based radiotracers. J Label Compd Radiopharm. 2018;61(9):652–71.

    Article  CAS  Google Scholar 

  6. Higashikawa K, Yagi K, Watanabe K, Kamino S, Ueda M, Hiromura M, et al. (64)Cu-DOTA-anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-cell infiltrating tumor tissues. PLoS One. 2014;9(11):e109866.

    Article  Google Scholar 

  7. England CG, Jiang D, Ehlerding EB, Rekoske BT, Ellison PA, Hernandez R, et al. 89Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imaging. 2018;45(1):110–20.

    Article  CAS  Google Scholar 

  8. Hecht M, Büttner-Herold M, Erlenbach-Wünsch K, Haderlein M, Croner R, Grützmann R, et al. PD-L1 is upregulated by radiochemotherapy in rectal adenocarcinoma patients and associated with a favourable prognosis. Eur J Cancer. 2016;65:52–60.

    Article  CAS  Google Scholar 

  9. Derer A, Spiljar M, Bäumler M, Hecht M, Fietkau R, Frey B, et al. Chemoradiation increases PD-L1 expression in certain melanoma and glioblastoma cells. Front Immunol. 2016;7:610.

    Article  Google Scholar 

  10. Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng Q-R, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2014;28(6):1280–8.

    Article  CAS  Google Scholar 

  11. Truillet C, Oh HLJ, Yeo SP, Lee C-Y, Huynh LT, Wei J, et al. Imaging PD-L1 expression with immunoPET. Bioconjug Chem. 2018;29(1):96–103.

    Article  CAS  Google Scholar 

  12. Kikuchi M, Clump DA, Srivastava RM, Sun L, Zeng D, Diaz-Perez JA, et al. Preclinical immunoPET/CT imaging using Zr-89-labeled anti-PD-L1 monoclonal antibody for assessing radiation-induced PD-L1 upregulation in head and neck cancer and melanoma. Oncoimmunology. 2017;6(7):e1329071.

    Article  Google Scholar 

  13. Hettich M, Braun F, Bartholoma MD, Schirmbeck R, Niedermann G. High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics. 2016;6(10):1629–40.

    Article  CAS  Google Scholar 

  14. Rashidian M, Ingram JR, Dougan M, Dongre A, Whang KA, LeGall C, et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med. 2017;214(8):2243–55.

    Article  CAS  Google Scholar 

  15. Larimer BM, Wehrenberg-Klee E, Caraballo A, Mahmood U. Quantitative CD3 PET imaging predicts tumor growth response to anti-CTLA-4 therapy. J Nucl Med. 2016;57(10):1607–11.

    Article  CAS  Google Scholar 

  16. Alam IS, Mayer AT, Sagiv-Barfi I, Wang K, Vermesh O, Czerwinski DK, et al. Imaging activated T cells predicts response to cancer vaccines. J Clin Invest. 2018;128(6):2569–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibo Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ehlerding, E.B., Cai, W. (2020). ImmunoPET: The Future of Response Evaluation for Cancer Immunotherapy. In: Lopci, E., Fanti, S. (eds) Atlas of Response to Immunotherapy. Springer, Cham. https://doi.org/10.1007/978-3-030-31113-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31113-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31112-4

  • Online ISBN: 978-3-030-31113-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics