Skip to main content

Review of Modern Cosmology

  • Chapter
  • First Online:
Cosmological Probes of Light Relics

Part of the book series: Springer Theses ((Springer Theses))

  • 257 Accesses

Abstract

Cosmology is the quantitative study of the structure and evolution of the universe. In the last few decades, it has emerged as a data-driven field of study which has revolutionized our understanding of the cosmos. In this chapter, we discuss both the theory and the observations underlying modern cosmology. We consider in particular the basics underlying the standard model of cosmology, the thermal history of the universe and the fluctuations around the smooth universe. In addition, we review the main cosmological observables: the cosmic microwave background, the large-scale structure of the universe and the baryon acoustic oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For convenience, we invert the otherwise standard notation and use overdots (primes) to denote derivatives with respect to conformal (physical) time \(\tau \) (t), i.e. \(\dot{a} \equiv \mathrm{d}a/ \, \mathrm{d}\tau \) and \(a' \equiv \mathrm{d}a/ \, \mathrm{d}t\). The physical Hubble rate is therefore given by \(H = a'\!/a\).

  2. 2.

    The minimal sum of masses from neutrino oscillation experiments is about 58 meV [17] and in particular cosmological measurements are closing in on this value with a current upper bound of \(\sum _i m_{\nu _i} < 0.23\,\mathrm{{eV}}\) (95 % c.l.) [8]. As the masses are so small that neutrinos have been (ultra-)relativistic for a large part of cosmological history, especially around the time of photon decoupling (\(T_\mathrm {rec}\approx 0.26\,\mathrm{{eV}}\)), their effect on the aspects of interest in this thesis is small. For simplicity, we will therefore treat neutrinos as massless particles throughout, except in the BOSS cosmology of Chap. 7.

  3. 3.

    Although we use the same symbol to denote the optical depth and conformal time, its meaning will always be clear from context.

  4. 4.

    We will come back to this assumption and correct for it in Sect. 3.3.

  5. 5.

    Recombination and (photon) decoupling are often used synonymously, in particular when referring to the time of decoupling, but actually are different processes. We will keep these two notions distinct in those cases where it is important and it will be apparent in all other cases.

  6. 6.

    There may also exist isocurvature perturbations for which the density fluctuations of one species do not necessarily correspond to density fluctuations in other species. These are disfavoured by current observations, in particular those of the CMB anisotropies.

  7. 7.

    The radiation perturbations oscillate on small scales (cf. Sect. 2.3.2). After time-averaging over a Hubble time, these perturbations can however be neglected and the potentials are only sourced by the matter fluctuations [30]. We can therefore neglect the time derivatives of the potentials on subhorizon scales, \(k^2\Phi \gg \ddot{\Psi },\mathcal {H}\dot{\Psi }\).

  8. 8.

    Once dark energy takes over as the main component of the universe, the clustering of matter stops and the growth of structures is halted by the accelerated expansion of the universe.

  9. 9.

    Accurately computing the evolution of all perturbations in the universe requires solving many coupled equations as the interactions between the various species have to be captured by a set of Boltzmann equations. This can only be done numerically which is achieved in the current state-of-the-art Boltzmann solvers CAMB [34] and CLASS [35]. Nevertheless, it is instructive to obtain approximate analytic solutions and get analytic insights in order to deepen our understanding of the underlying physics (cf. e.g. Chap. 5).

  10. 10.

    This is a good approximation in the matter-dominated era. During radiation domination, the time evolution of the gravitational potential around sound-horizon crossing leads to the radiation-driving effect which we will discuss below.

  11. 11.

    Note that we could of course rewrite this solution in terms of an amplitude \(A_{\varvec{k}}\) and a non-zero phase \(\phi _{\varvec{k}}\), i.e. \(\cos (c_s k \tau ) \rightarrow \cos (c_s k \tau + \phi _{\varvec{k}})\), with \(B_{\varvec{k}}= 0\) implying \(\phi _{\varvec{k}}= 0\).

  12. 12.

    As decoupling happens during the epoch of recombination, we use \(\tau _\mathrm {rec}\) instead of \(\tau _F\) or \(\tau _\mathrm {dec}\) to specify the time of photon decoupling. This will allow easier discrimination of other freeze-out events in later parts of this thesis.

  13. 13.

    To be precise, the sound horizon is given by \(r_s(\tau ) = \int _0^\tau \!\mathrm{d}\tau \, c_s(\tau )\), which also captures the small time dependence of \(c_s\) that we however neglect in our analytic treatment.

  14. 14.

    The size of the sound horizon imprinted in the baryon perturbations is slightly larger than the size observed in the CMB anisotropies. The latter is set at the time when most photons had decoupled from the baryons. At this point, the baryons however still feel the drag of photons and essentially remain coupled to the photons because there are about \(10^{9}\) times more photons than baryons. The end of the so-called drag epoch, \(\tau _\mathrm {drag} > \tau _\mathrm {rec}\), marks the time when baryons finally loose this contact. The two sizes of the sound horizon inferred from the latest CMB measurements are \(r_s(z_\mathrm {rec}\approx 1090) \approx 145\,\mathrm{{Mpc}}\) and \(r_s(z_\mathrm {drag} \approx 1060) \approx 148\,\mathrm{{Mpc}}\) [8], i.e. they are relatively close, but different at a significance of more than \(8\sigma \) at the current level of precision.

  15. 15.

    In this context, CMB experiments are surveys which map the CMB anisotropies in the sky. These measurements are usually not taken at a single, but at several frequencies. This is to reliably subtract galactic and astrophysical foregrounds, which are other sources of microwave emission and polarization originating, in particular, from galactic dust. We will generally assume that these foregrounds have been accounted for (or their effects can easily be marginalized over) so that we have direct access to the primordial signal.

  16. 16.

    We could have equivalently obtained the angular power spectrum by decomposing the temperature fluctuations \(\delta T\) into spherical harmonics and computing the correlation function of the expansion coefficients. This is how measurements of \(\delta T\) are commonly processed to obtain the power spectrum \(C_\ell ^{TT}\).

  17. 17.

    Cosmic variance refers to the statistical uncertainty inherent in cosmological measurements since we are only able to measure one realization of the true model underlying the universe. In a cosmic variance-limited measurement, the statistical error is dominated by this uncertainty, which is given by \(\Delta C_\ell = \sqrt{2/(2\ell +1)}\,C_\ell \) for a CMB auto-spectrum.

  18. 18.

    The location of the first peak is very sensitive to the curvature of the universe via the distance to last-scattering. The measurement of this peak famously led to the conclusion that our universe has a geometry that is very close to flat [55], which laid the groundwork for the \(\Lambda \mathrm {CDM}\) model. Today, the famous \(\Omega _m\)-\(\Omega _\Lambda \) plot shows that the confidence regions inferred from CMB, BAO and supernovae data, which all have different degeneracy lines, intersect in a single small region that is consistent with a flat universe, \(\Omega _M+\Omega _\Lambda +\Omega _r = 1\).

  19. 19.

    In analogy with the properties of the electric and magnetic fields in electrodynamics, E-mode and B-mode polarization is curl- and divergence-free, respectively.

  20. 20.

    A fraction of the E-modes is converted to B-modes in the late universe through gravitational lensing (see below). In contrast to the primary B-modes, these induced B-modes have been detected and can in principle be used to revert the effects of lensing on the temperature and E-mode spectra in a process referred to as delensing.

  21. 21.

    For simplicity, we set the primordial spectral tilt to unity, \(n_\mathrm {s}= 1\), in this discussion, i.e. assume a perfectly scale-invariant primordial power spectrum.

  22. 22.

    Although we observe the BAO signal as acoustic peaks both in CMB and in LSS measurements, we will usually refer to the latter when we mention BAO observations. Strictly speaking, the spectrum of baryon acoustic oscillations is \(P^\mathrm {w}(k)\). For convenience, we will however also refer to O(k) as the BAO spectrum.

  23. 23.

    Another common dataset that is used to break degeneracies are the local \(H_0\) measurements from supernovae. Having said that, with both global, such as those from the CMB and BAO, and local measurements improving, the inferred values of \(H_0\) are currently statistically discrepant at the \(3\sigma \) level [102]. It is however questionable whether we should be paying too much attention given the vast statistical power of the CMB in particular (see e.g. [103]).

References

  1. A. Riess et al. (Supernova Search Team), Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201 [astro-ph]

  2. S. Perlmutter et al. (Supernova Cosmology Project), Measurements of \(\Omega \) and \(\Lambda \) from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133 [astro-ph]

  3. G. Smoot et al. (COBE Collaboration), Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396, L1 (1992)

    Google Scholar 

  4. C. Bennett et al., Four-year COBE DMR cosmic microwave background observations maps and basic results. Astrophys. J. 464, L1 (1996). arXiv:astro-ph/9601067 [astro-ph]

  5. D. Spergel et al. (WMAP Collaboration), First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003). arXiv:astro-ph/0302209 [astro-ph]

  6. G. Hinshaw et al. (WMAP Collaboration), Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. 208, 19 (2013). arXiv:1212.5226 [astro-ph.CO]

  7. P.A.R. Ade et al. (Planck Collaboration), Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014). arXiv:1303.5076 [astro-ph.CO]

  8. P.A.R. Ade et al. (Planck Collaboration), Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016). arXiv:1502.01589 [astro-ph.CO]

  9. M. Colless et al. (2dFGRS Collaboration), The 2dF Galaxy Redshift Survey: spectra and redshifts. Mon. Not. Roy. Astron. Soc. 328, 1039 (2001). arXiv:astro-ph/0106498 [astro-ph]

  10. C. Stoughton et al. (SDSS Collaboration), The Sloan Digital Sky Survey: early data release. Astron. J. 123, 485 (2002)

    Google Scholar 

  11. S. Alam et al. (BOSS Collaboration), The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. Roy. Astron. Soc. 470, 2617 (2017). arXiv:1607.03155 [astro-ph.CO]

  12. A. Einstein, Die Grundlage der Allgemeinen Relativitätstheorie. Ann. Phys. 49, 769 (1916)

    Article  MATH  Google Scholar 

  13. A. Friedmann, Über die Krümmung des Raumes. Z. Phys. 10, 377 (1922)

    Article  ADS  MATH  Google Scholar 

  14. D. Weinberg, M. Mortonson, D. Eisenstein, C. Hirata, A. Riess, E. Rozo, Observational probes of cosmic acceleration. Phys. Rept. 530, 87 (2013). arXiv:1201.2434 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Abbott et al. (DES Collaboration), Dark Energy Survey year 1 results: cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 98, 043526 (2018). arXiv:1708.01530 [astro-ph.CO]

  16. D. Baumann, TASI Lectures on Inflation. arXiv:0907.5424 [hep-th]

  17. C. Patrignani et al. (Particle Data Group), Review of particle physics. Chin. Phys. C 40, 100001 (2016)

    Google Scholar 

  18. D. Fixsen, The temperature of the cosmic microwave background. Astrophys. J. 707, 916 (2009). arXiv:0911.1955 [astro-ph.CO]

    Article  ADS  Google Scholar 

  19. E. Aver, K. Olive, E. Skillman, The effects of He-I \(\lambda \) 10830 on helium abundance determinations. JCAP 07, 011 (2015). arXiv:1503.08146 [astro-ph.CO]

    Article  ADS  Google Scholar 

  20. S. Borsanyi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics. Nature 539, 69 (2016). arXiv:1606.07494 [hep-lat]

    Article  ADS  Google Scholar 

  21. A. Penzias, R. Wilson, A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  22. D. Fixsen, E. Cheng, J. Gales, J. Mather, R. Shafer, E. Wright, The cosmic microwave background spectrum from the full COBE FIRAS dataset. Astrophys. J. 473, 576 (1996). arXiv:astro-ph/9605054 [astro-ph]

  23. J. Bardeen, Gauge invariant cosmological perturbations. Phys. Rev. D 22, 1882 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Kodama, M. Sasaki, Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1 (1984)

    Article  ADS  Google Scholar 

  25. V. Mukhanov, H. Feldman, R. Brandenberger, Theory of cosmological perturbations. Phys. Rept. 215, 203 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  26. C.-P. Ma, E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. Astrophys. J. 455, 7 (1995). arXiv:astro-ph/9506072 [astro-ph]

  27. S. Bashinsky, U. Seljak, Neutrino perturbations in CMB anisotropy and matter clustering. Phys. Rev. D 69, 083002 (2004). arXiv:astro-ph/0310198 [astro-ph]

  28. V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  29. K. Malik, D. Wands, Cosmological perturbations. Phys. Rept. 475, 1 (2009). arXiv:0809.4944 [astro-ph]

  30. S. Weinberg, Cosmological fluctuations of short wavelength. Astrophys. J. 581, 810 (2002). arXiv:astro-ph/0207375 [astro-ph]

  31. W. Hu, Wandering in the background: a CMB explorer. Ph.D. Thesis, University of California, Berkeley (1995). arXiv:astro-ph/9508126 [astro-ph]

  32. W. Hu, S. Dodelson, Cosmic microwave background anisotropies. Ann. Rev. Astron. Astrophys. 40, 171 (2002). arXiv:astro-ph/0110414 [astro-ph]

  33. A. Challinor, H. Peiris, Lecture notes on the physics of cosmic microwave background anisotropies. AIP Conf. Proc. 1132, 86 (2009). arXiv:0903.5158 [astro-ph.CO]

    Article  ADS  Google Scholar 

  34. A. Lewis, A. Challinor, A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models. Astrophys. J. 538, 473 (2000). arXiv:astro-ph/9911177 [astro-ph]

  35. D. Blas, J. Lesgourgues, T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: approximation schemes. JCAP 07, 034 (2011). arXiv:1104.2933 [astro-ph.CO]

  36. M. Zaldarriaga, D. Harari, Analytic approach to the polarization of the cosmic microwave background in flat and open universes. Phys. Rev. D 52, 3276 (1995). arXiv:astro-ph/9504085 [astro-ph]

  37. S. Bashinsky, E. Bertschinger, Dynamics of cosmological perturbations in position space. Phys. Rev. D 65, 123008 (2002). arXiv:astro-ph/0202215 [astro-ph]

  38. D. Eisenstein, H.-J. Seo, M. White, On the robustness of the acoustic scale in the low-redshift clustering of matter. Astrophys. J. 664, 660 (2007). arXiv:astro-ph/0604361 [astro-ph]

    Article  ADS  Google Scholar 

  39. Adapted from [38] with permission. Copyright by the American Astronomical Society

    Google Scholar 

  40. S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)

    MATH  Google Scholar 

  41. Z. Slepian, D. Eisenstein, A simple analytic treatment of linear growth of structure with baryon acoustic oscillations. Mon. Not. Roy. Astron. Soc. 457, 24 (2016). arXiv:1509.08199 [astro-ph.CO]

    Article  ADS  Google Scholar 

  42. M. Bartelmann, P. Schneider, Weak gravitational lensing. Phys. Rept. 340, 291 (2001). arXiv:astro-ph/9912508 [astro-ph]

    Article  ADS  MATH  Google Scholar 

  43. J. Carlstrom, G. Holder, E. Reese, Cosmology with the Sunyaev-Zel’dovich effect. Ann. Rev. Astron. Astrophys. 40, 643 (2002). arXiv:astro-ph/0208192 [astro-ph]

    Article  ADS  Google Scholar 

  44. S. Furlanetto, S.P. Oh, F. Briggs, Cosmology at low frequencies: the 21 cm transition and the high-redshift universe. Phys. Rept. 433, 181 (2006). arXiv:astro-ph/0608032 [astro-ph]

    Article  ADS  Google Scholar 

  45. M. Kilbinger, Cosmology with cosmic shear observations: a review. Rept. Prog. Phys. 78, 086901 (2015). arXiv:1411.0115 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  46. W. Hu, M. White, A CMB polarization primer. New Astron. 2, 323 (1997). arXiv:astro-ph/9706147 [astro-ph]

    Article  ADS  Google Scholar 

  47. S. Dodelson, Modern Cosmology (Academic Press, San Diego, 2003)

    Google Scholar 

  48. S. Staggs, J. Dunkley, L. Page, Recent discoveries from the cosmic microwave background: a review of recent progress. Rept. Prog. Phys. 81, 044901 (2018)

    Article  ADS  Google Scholar 

  49. R. Adam et al. (Planck Collaboration), Planck 2015 results. VIII. High frequency instrument data processing: calibration and maps. Astron. Astrophys. 594, A8 (2016). arXiv:1502.01587 [astro-ph.CO]

  50. Map of CMB temperature from SMICA, http://www.cosmos.esa.int/documents/387566/425793/2015_SMICA_CMB/, Original image credit: ESA and the Planck collaboration

  51. R. Adam et al. (Planck Collaboration), Planck 2015 results. I. Overview of products and scientific results. Astron. Astrophys. 594, A1 (2016). arXiv:1502.01582 [astro-ph.CO]

  52. N. Aghanim et al., (Planck Collaboration), Planck 2015 results. XI. CMB power spectra, likelihoods and robustness of parameters. Astron. Astrophys. 594, A11 (2015). arXiv:1507.02704 [astro-ph.CO]

  53. A. Miller et al., A Measurement of the Angular Power Spectrum of the CMB from \(\ell \) = 100 to 400. Astrophys. J. 524, L1 (1999). arXiv:astro-ph/9906421 [astro-ph]

  54. G. Hinshaw et al. (WMAP Collaboration), First year wilkinson microwave anisotropy probe (WMAP) observations: the angular power spectrum. Astrophys. J. Suppl. 148, 135 (2003).arXiv:astro-ph/0302217 [astro-ph]

    Google Scholar 

  55. P. de Bernardis et al. (BOOMERanG Collaboration), A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955 (2000). arXiv:astroph/0004404 [astro-ph]

  56. J. Kovac, E. Leitch, C. Pryke, J. Carlstrom, N. Halverson, W. Holzapfel, Detection of polarization in the cosmic microwave background using DASI. Nature 420, 772 (2002). arXiv:astro-ph/0209478 [astro-ph]

  57. J. Bond, G. Efstathiou, Cosmic background radiation anisotropies in universes dominated by non-baryonic dark matter. Astrophys. J. 285, L45 (1984)

    Article  ADS  Google Scholar 

  58. A. Polnarev, Polarization and anisotropy induced in the microwave background by cosmological gravitational waves. Astron. Zh. 62, 1041 (1985)

    ADS  Google Scholar 

  59. U. Seljak, Measuring polarization in the cosmic microwave background. Astrophys. J. 482, 6 (1997). arXiv:astro-ph/9608131 [astro-ph]

  60. M. Zaldarriaga, U. Seljak, An all-sky analysis of polarization in the microwave background. Phys. Rev. D 55, 1830 (1997). arXiv:astro-ph/9609170 [astro-ph]

    Article  ADS  Google Scholar 

  61. M. Kamionkowski, A. Kosowsky, A. Stebbins, Statistics of cosmic microwave background polarization. Phys. Rev. D 55, 7368 (1997). arXiv:astro-ph/9611125 [astro-ph]

    Article  ADS  Google Scholar 

  62. A. Lewis, A. Challinor, Weak gravitational lensing of the CMB. Phys. Rept. 429, 1 (2006). arXiv:astro-ph/0601594 [astro-ph]

    Article  ADS  Google Scholar 

  63. W. Hu, T. Okamoto, Mass reconstruction with cosmic microwave background polarization. Astrophys. J. 574, 566 (2002). arXiv:astro-ph/0111606 [astro-ph]

    Article  ADS  Google Scholar 

  64. L. Knox, Y.-S. Song, A limit on the detectability of the energy scale of inflation. Phys. Rev. Lett. 89, 011303 (2002). arXiv:astro-ph/0202286 [astro-ph]

    Article  ADS  Google Scholar 

  65. C. Hirata, U. Seljak, Reconstruction of lensing from the cosmic microwave background polarization. Phys. Rev. D 68, 083002 (2003). arXiv:astro-ph/0306354 [astro-ph]

    Article  ADS  Google Scholar 

  66. D. Green, J. Meyers, A. van Engelen, CMB delensing beyond the B-modes. JCAP 12, 005 (2017). arXiv:1609.08143 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  67. N. Sehgal, M. Madhavacheril, B. Sherwin, A. van Engelen, Internal delensing of cosmic microwave background acoustic peaks. Phys. Rev. D 95, 103512 (2017). arXiv:1612.03898 [astro-ph.CO]

    Article  ADS  Google Scholar 

  68. J. Carron, A. Lewis, A. Challinor, Internal delensing of Planck CMB temperature and polarization. JCAP 05, 035 (2017). arXiv:1701.01712 [astro-ph.CO]

  69. P.A.R. Ade et al. (Planck Collaboration), Planck 2015 results. XV. Gravitational lensing. Astron. Astrophys. 594, A15 (2016). arXiv:1502.01591 [astro-ph.CO]

  70. The SDSS’s map of the universe, http://www.sdss.org/science/orangepie/, Original image credit: M. Blanton and SDSS

  71. Adapted from [78] with permission. Copyright by the American Astronomical Society

    Google Scholar 

  72. P. McDonald et al. (SDSS Collaboration), The Lyman-\(\alpha \) forest power spectrum from the Sloan Digital Sky Survey. Astrophys. J. Suppl. 163, 80 (2006). arXiv:astro-ph/0405013 [astro-ph]

  73. A. Vikhlinin et al., Chandra Cluster Cosmology Project III: cosmological parameter constraints. Astrophys. J. 692, 1060 (2009). arXiv:0812.2720 [astro-ph]

  74. B. Reid et al., Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies. Mon. Not. Roy. Astron. Soc. 404, 60 (2010). arXiv:0907.1659 [astro-ph.CO]

  75. N. Sehgal et al., The Atacama Cosmology Telescope: cosmology from galaxy clusters detected via the Sunyaev-Zel’dovich effect. Astrophys. J. 732, 44 (2011). arXiv:1010.1025 [astro-ph.CO]

  76. S. Das et al., Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope. Phys. Rev. Lett. 107, 021301 (2011). arXiv:1103.2124 [astro-ph.CO]

  77. J. Tinker et al., Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters. Astrophys. J. 745, 16 (2012). arXiv:1104.1635 [astro-ph.CO]

    Article  ADS  Google Scholar 

  78. R. Hložek et al., The atacama cosmology telescope: a measurement of the primordial power spectrum. Astrophys. J. 749, 90 (2012). arXiv:1105.4887 [astro-ph.CO]

    Article  ADS  Google Scholar 

  79. F. Bernardeau, S. Colombi, E. Gaztanaga, R. Scoccimarro, Large-scale structure of the universe and cosmological perturbation theory. Phys. Rept. 367, 1 (2002). arXiv:astroph/0112551 [astro-ph]

  80. M. Crocce, R. Scoccimarro, Renormalized cosmological perturbation theory. Phys. Rev. D 73, 063519 (2006). arXiv:astro-ph/0509418 [astro-ph]

    Article  ADS  Google Scholar 

  81. D. Baumann, A. Nicolis, L. Senatore, M. Zaldarriaga, Cosmological non-linearities as an effective fluid. JCAP 07, 051 (2012). arXiv:1004.2488 [astro-ph.CO]

    Article  ADS  Google Scholar 

  82. J. Carrasco, M. Hertzberg, L. Senatore, The effective field theory of cosmological large-scale structures. JHEP 09, 082 (2012). arXiv:1206.2926 [astro-ph.CO]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. M. Bartelmann, F. Fabis, D. Berg, E. Kozlikin, R. Lilow, C. Viermann, A microscopic, non-equilibrium, statistical field theory for cosmic structure formation. New J. Phys. 18, 043020 (2016). arXiv:1411.0806 [cond-mat.stat-mech]

  84. D. Blas, M. Garny, M.M. Ivanov, S. Sibiryakov, Time-sliced perturbation theory for large-scale structure I: general formalism. JCAP 07, 052 (2016). arXiv:1512.05807 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  85. V. Desjacques, D. Jeong, F. Schmidt, Large-scale galaxy bias. Phys. Rept. 733, 1 (2018). arXiv:1611.09787 [astro-ph.CO]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. D. Eisenstein et al. (SDSS Collaboration), Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005). arXiv:astro-ph/0501171 [astro-ph]

  87. S. Cole et al. (2dFGRS Collaboration), The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final dataset and cosmological implications. Mon. Not. Roy. Astron. Soc. 362, 505 (2005). arXiv:astro-ph/0501174 [astro-ph]

  88. Adapted from [99, 100] with permission of Oxford University Press on behalf of the Royal Astronomical Society

    Google Scholar 

  89. M. Crocce, R. Scoccimarro, Non-linear evolution of baryon acoustic oscillations. Phys. Rev. D 77, 023533 (2008). arXiv:0704.2783 [astro-ph]

    Article  ADS  Google Scholar 

  90. N. Sugiyama, D. Spergel, How does non-linear dynamics affect the baryon acoustic oscillation? JCAP 02, 042 (2014). arXiv:1306.6660 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  91. H.-J. Seo, D. Eisenstein, Improved forecasts for the baryon acoustic oscillations and cosmological distance scale. Astrophys. J. 665, 14 (2007). arXiv:astro-ph/0701079 [astro-ph]

    Article  ADS  Google Scholar 

  92. T. Baldauf, M. Mirbabayi, M. Simonović, M. Zaldarriaga, Equivalence Principle and the Baryon Acoustic Peak. Phys. Rev. D 92, 043514 (2015). arXiv:1504.04366 [astro-ph.CO]

  93. D. Blas, M. Garny, M. Ivanov, S. Sibiryakov, Time-sliced perturbation theory II: baryon acoustic oscillations and infrared resummation. JCAP 07, 028 (2016). arXiv:1605.02149 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  94. D. Eisenstein, H.-J. Seo, E. Sirko, D. Spergel, Improving cosmological distance measurements by reconstruction of the baryon acoustic peak. Astrophys. J. 664, 675 (2007). arXiv:astro-ph/0604362 [astro-ph]

    Article  ADS  Google Scholar 

  95. N. Padmanabhan, X. Xu, D. Eisenstein, R. Scalzo, A. Cuesta, K. Mehta, E. Kazin, A two-percent distance to z = 0.35 by reconstructing baryon acoustic oscillations – I. Methods and application to the Sloan Digital Sky Survey. Mon. Not. Roy. Astron. Soc. 427, 2132 (2012). arXiv:1202.0090 [astro-ph.CO]

  96. B. Sherwin, M. Zaldarriaga, The shift of the baryon acoustic oscillation scale: a simple physical picture. Phys. Rev. D 85, 103523 (2012). arXiv:1202.3998 [astro-ph.CO]

    Article  ADS  Google Scholar 

  97. M. Schmittfull, Y. Feng, F. Beutler, B. Sherwin, M.Y. Chu, Eulerian BAO reconstructions and N-point statistics. Phys. Rev. D 92, 123522 (2015). arXiv:1508.06972 [astro-ph.CO]

    Article  ADS  Google Scholar 

  98. H.-J. Seo, F. Beutler, A. Ross, S. Saito, Modelling the reconstructed BAO in Fourier space. Mon. Not. Roy. Astron. Soc. 460, 2453 (2016). arXiv:1511.00663 [astro-ph.CO]

  99. F. Beutler et al. (BOSS Collaboration), The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in Fourier space. Mon. Not. Roy. Astron. Soc. 464, 3409 (2017). arXiv:1607.03149 [astro-ph.CO]

  100. A. Ross et al. (BOSS Collaboration), The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function. Mon. Not. Roy. Astron. Soc. 464, 1168 (2017). arXiv:1607.03145 [astro-ph.CO]

  101. M. Vargas-Magaña et al. (BOSS Collaboration), The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: theoretical systematics and baryon acoustic oscillations in the galaxy correlation function. Mon. Not. Roy. Astron. Soc. 477, 1153 (2018). arXiv:1610.03506 [astro-ph.CO]

  102. A. Riess et al., A 2.4 % determination of the local value of the Hubble constant. Astrophys. J. 826, 56 (2016). arXiv:1604.01424 [astro-ph.CO]

  103. D. Scott, The standard model of cosmology: a skeptic’s guide, arXiv:1804.01318 [astro-ph.CO]

  104. D. Baumann, D. Green, M. Zaldarriaga, Phases of new physics in the BAO spectrum. JCAP 11, 007 (2017). arXiv:1703.00894 [astro-ph.CO]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Wallisch .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wallisch, B. (2019). Review of Modern Cosmology. In: Cosmological Probes of Light Relics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31098-1_2

Download citation

Publish with us

Policies and ethics