Skip to main content

Low Velocity Impact of Marine Composites: Experiments and Theory

  • Chapter
  • First Online:
Advances in Thick Section Composite and Sandwich Structures

Abstract

This chapter seeks to provide an overview on the dynamic behavior of Navy-relevant composite materials to low velocity impact, at room and extreme temperatures. The study focuses on carbon fiber laminates toward establishing a compelling body of empirical results, which could support numerical and semi-empirical models for the prediction of dynamic behavior. Experiments were carried out using a modular falling weight tower with a thermal chamber, for different energy levels. Results were collated in terms of maximum load, penetration extent, absorbed energy, indentation, delamination, and residual strength. The main novelty of the research lies in the experimental scheme which was realized to dynamically load marine panels, across a range of experimental temperatures in the presence of the water simulating realistic operating conditions of marine vessels. The setup is based on a modified falling weight machine, in which an instrumented impactor falls on a clamped specimen, resting upon a water column or it is immersed in it, at a controlled temperature. The effectiveness of two non-destructive techniques (ultra sound and electronic speckle pattern interferometry) in detecting barely-visible and non-visible impact damage was investigated. In agreement with our intuition, the presence of the water was found to critically shape the dynamic loading experienced by the panel. Preliminary insight from a physically-based theoretical model was presented to shed light on the underlying fluid-structure interaction and parametrically investigate the role of geometric and physical parameters on the dynamic response of water-backed panels subjected to low velocity impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howard M, Hollaway L (1987) The characterization of the non-linear viscoelastic properties of a randomly orientated fibre/matrix composite. Composites 18:317–323

    Article  CAS  Google Scholar 

  2. Shindo Y, Ueda S, Nishioka Y (1993) Mechanical behavior of woven composites at low temperatures. Fusion Eng Des 20:469–474

    Article  CAS  Google Scholar 

  3. Kim MG, Kang SG, Kim CG, Kong CW (in press) Composite structures

    Google Scholar 

  4. Sefrani Y, Berthelot JM (2006) Temperature effect on the damping properties of unidirectional glass fibre composites. Compos Part B 37:346–355

    Article  Google Scholar 

  5. Khalid A (2006) The effect of testing temperature and volume fraction on impact energy of composites. Mater Des 27:499–506

    Article  CAS  Google Scholar 

  6. Ibekwe SI, Mensah PF, Li G, Pang SS, Stubblefield MA (2007) Impact and post impact response of laminated beams at low temperatures. Compos Struct 79:12–17

    Article  Google Scholar 

  7. Okada T, Faudre MC, Tsuchikura N, Nishi Y (2016) Improvement of low-temperature impact value of Sandwich-structural(CFRP/ABS/CFRP) laminate plies by Homogeneous Low-EnergyElectron Beam Irradiation (HLEBI). Mater Trans 57(3):305–311

    Article  CAS  Google Scholar 

  8. Kang K-w, Kim H, Chung T, Koh S (2010) Temperature effect of low velocity impact resistance of glass/epoxy laminates. Int J Mod Phys B 24(15–16):2657–2663

    Article  CAS  Google Scholar 

  9. Lopresto V, Langella A, Papa I (2017) Dynamic load on composite laminates in the presence of water. Polym Eng Sci 57(6):613–620

    Article  CAS  Google Scholar 

  10. Liu S, Kutlu Z, Chang FK (1993) Matrix cracking and delamination propagation in laminated composites subjected to transversely concentrated loading. J Compos Mater 27:436

    Article  Google Scholar 

  11. Heimbs S, Heller S, Middendorf P, Hähnel F, Weiße J (2009) Low velocity impact on CFRP plates with compressive preload: test and modelling. Int J Impact Eng 36(10–11):1182–1193

    Article  Google Scholar 

  12. Bouvet C, Rivallant S (2016) Damage tolerance of composite structures under low-velocity impact. In: Dynamic deformation, damage and fracture in composite materials and structures. Woodhead Publishing, Cambridge, pp 1–7

    Google Scholar 

  13. Aymerich F, Dore F, Priolo P (2008) Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements. Compos Sci Technol 68(12):2383–2390

    Article  CAS  Google Scholar 

  14. ABAQUS Analysis User’s Manual 6.12, 2012

    Google Scholar 

  15. Belingardi G, Vadori R (2002) Low velocity impact tests of laminate glass–fiber–epoxy matrix composite materials plates. Int J Impact Eng 27:213–229

    Article  Google Scholar 

  16. Belingardi G, Vadori R (2003) Influence of the laminate thickness in low velocity impact behaviour of composite material plate. Compos Struct 61:27–38

    Article  Google Scholar 

  17. Pagliarulo V, Rocco A, Langella A, Riccio A, Ferraro P, Antonucci V, Ricciardi MR, Toscano C, Lopresto V (2015) Impact damage investigation on composite laminates: comparison among different NDT methods and numerical simulation. Meas Sci Technol 26(8):085603

    Article  Google Scholar 

  18. Busse G (1979) Optoacoustic phase angle measurement for probing a metal. Appl Phys Lett 35:759–760

    Article  CAS  Google Scholar 

  19. Pagliarulo V, Palummo R, Rocco A, Ferraro P, Ricciardi MR, Antonucci V (2014) Evaluation of delaminated area of polymer/carbon nanotubes fiber reinforced composites after flexural tests by ESPI, IEEE MAS Proceedings 6865922: 211–215

    Google Scholar 

  20. Yang SH, Sun CT (1982) In: Daniel IM (ed) Indentation law for composite materials, Composite materials: testing and design, ASTM STP 787. American society for testing and materials, Philadelphia, pp 425–449

    Google Scholar 

  21. Timoshenko SP (1953) Strength of materials. McGraw-Hill, New York

    Google Scholar 

  22. Wang H, Vu-Khanh T (1995) Fracture mechanism and mechanisms of impact-induced delamination in laminated composites. J Compos Mater 29:156–178

    Article  Google Scholar 

  23. Chang FK, Choi HY, Wang HS (1990) Damage of laminated composites due to low velocity impact, 31st AIAA/ASME/ASCE/AHS/ASC structures, structures dynamics and materials conference, Long Beach, 930

    Google Scholar 

  24. Abrate S (2001) Modeling of impacts on composite structures. Compos Struct 51:129–138

    Article  Google Scholar 

  25. Krueger (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109–143

    Article  Google Scholar 

  26. Pagliarulo V, Lopresto V, Langella A, Antonucci V, Ricciardi MR, Ferraro P (2016) Non-destructive evaluation of impact damage on carbon fiber laminates: comparison between ESPI and Shearography, AIP Conference Proceedings 1740, 040002

    Google Scholar 

  27. Kwon YW, Owens AC (2011) Dynamic responses of composite structures with fluid–structure interaction, Advanced Composite Materials IN-TECH publisher

    Google Scholar 

  28. Kwon YW (2014) Dynamic responses of composite structures in contact with water while subjected to harmonic loads. Appl Compos Mater 21:227–245

    Article  Google Scholar 

  29. Kwon YW, Violette MA (2012) Damage initiation and growth in laminated polymer composite plates with fluid-structure interaction under impact loading. Int J Multiphysics 6(1):29–42

    Article  CAS  Google Scholar 

  30. Caprino G, Lopresto V, Scarponi C, Briotti G (1999) Influence of material thickness on the response of carbon-fabric/epoxy panels to low-velocity impact. Compos Sci Technol 59:2279–2286

    Article  CAS  Google Scholar 

  31. Putić S, Stamenović M, Bajčeta B, Stajčić P, Bošnjak S (2007) The influence of high and low temperatures on the impact properties of glass–epoxy composites. J Serb Chem Soc 72(7):713–722

    Article  Google Scholar 

  32. Lopresto V, Langella A (2014) Composite laminates under dynamic extreme conditions, international symposium on dynamic response and failure of composite materials, DRaF2014. Procedia Eng 88:173–179

    Article  Google Scholar 

  33. Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47:329–334

    Article  Google Scholar 

  34. Caprino G (1984) Residual strength prediction of impacted CFRP laminates. J Compos Mater 18:508–518

    Article  Google Scholar 

  35. Papa I, Langella A, Lopresto V (2018) CFRP laminates impacted at low velocity: influence of the matrix and temperature, AIP Conference Proceedings, 1981

  36. Jackson WC, Poe CC Jr (1993) The use of impact force as a scale parameter for the impact response of composite laminates. J Compos Tech Res 15(4):282–289

    Article  Google Scholar 

  37. Lagace PA, Williamson JE, Tsang PHW, Wolf E, Thomas SA (1993) A preliminary proposition for a test method to measure (impact) damage resistance. J Reinf Plast Compos 12(5):584–601

    Article  Google Scholar 

  38. Shams A, Lopresto V, Porfiri M (2017) Modeling fluid-structure interactions during impact loading of water-backed panels. Compos Struct 171:576–590

    Article  Google Scholar 

  39. Wagner H (1932) Uber stoss und gleitvorgange an der oberflache von flussigkeite, ZAMM – Zeitschrift fur Ange- wandte Mathematik und. Mechanik 12(4):193–215

    Google Scholar 

  40. Lopresto V, Langella A, Papa I (2019) Interaction of water with carbon fiber reinforced polymer laminates under dynamic loading conditions. J Mater Eng Perform,. in press 28:3220–3227. https://doi.org/10.1007/s11665-019-03915-5

    Article  CAS  Google Scholar 

  41. Lopresto V, Langella A, Papa I (2016) Residual strength evaluation after impact tests in extreme conditions on CFRP laminates. Procedia Eng 167:138–142

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work has been supported by the Office of Naval Research (Grant N00014-10-1-0988, N00014-18-1-2218, N00014-14-1-0380, and N62909-16-1-2220) with Dr. Y.D.S. Rajapakse as the program manager.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Lopresto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopresto, V., Papa, I., Pagliarulo, V., Russo, P., Porfiri, M. (2020). Low Velocity Impact of Marine Composites: Experiments and Theory. In: Lee, S. (eds) Advances in Thick Section Composite and Sandwich Structures. Springer, Cham. https://doi.org/10.1007/978-3-030-31065-3_8

Download citation

Publish with us

Policies and ethics