Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 181 Accesses

Abstract

The overall methodological approach of this thesis is to combine 15N-SIP mesocosm experiments with a field plot 15N tracing experiment in order to gain a better understanding of the microbial processing of fertiliser N in soils at a biomolecular level and relate this to the situation in a field environment in which physical partitioning and transport of N plays an important role.

Parts of this chapter have been adapted from Charteris et al. [1] (published by Rapid Communications in Mass Spectrometry under a CC BY 4.0 licence).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charteris AF, Knowles TDJ, Michaelides K, Evershed RP (2016) Compound-specific amino acid 15N stable isotope probing of nitrogen assimilation by the soil microbial biomass using gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 30:1846–1856. https://doi.org/10.1002/rcm.7612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tyson KC, Hawkins JMB, Stone AC (1993) Final report of the AFRC–ADAS drainage experiment 1982–1993. Institute of Grassland and Environmental Research, North Wyke, Okehampton, UK

    Google Scholar 

  3. Harrod TR, Hogan DV (2008) The soils of North Wyke and Rowden, Revised edition of original report by Harrod, T. R. 1981, Soil Survey of England and Wales (now the National Soil Resources Institute, Cranfield University, UK). Report available from Rothamstead Research, http://www.rothamsted.ac.uk/northwyke. Accessed 05 June 2015

  4. Bol R, Amelung W, Friedrich C (2004) Role of aggregate surface and core fraction in the sequestration of carbon from dung in a temperate grassland soil. Eur J Soil Sci 55:71–77. https://doi.org/10.1046/j.1365-2389.2003.00582.x

    Article  Google Scholar 

  5. Knowles TDJ (2009) Following the fate of proteinaceous material in soil using a compound-specific 13C- and 15N-labelled tracer approach, Unpublished Ph.D. Thesis, University of Bristol, Bristol, UK

    Google Scholar 

  6. Knowles TDJ, Chadwick DR, Bol R, Evershed RP (2010) Tracing the rate and extent of N and C flow from 13C, 15N-glycine and glutamate into individual de novo synthesised soil amino acids. Org Geochem 41:1259–1268. https://doi.org/10.1016/j.orggeochem.2010.09.003

    Article  CAS  Google Scholar 

  7. BADC. Accessed 21 Jan 2015

    Google Scholar 

  8. Defra (2013) Guidance on complying with the rules for Nitrate Vulnerable Zones in England for 2013 to 2016. Report available from http://www.gov.uk/nitrate-vulnerable-zones. Accessed 13 Jan 2016

  9. MAFF and ADAS (1986) The analysis of agricultural materials: a manual of the analytical methods used by the Agricultural Development and Advisory Service (ADAS), Reference book 427, 3rd edn., HMSO, London, UK

    Google Scholar 

  10. Černohlávková J, Jarkovský J, Nešporová M, Hofman J (2009) Variability of soil microbial properties: effects of sampling, handling and storage. Ecotoxicol Environ Saf 72:2102–2108. https://doi.org/10.1016/j.ecoenv.2009.04.023

    Article  CAS  PubMed  Google Scholar 

  11. Ross DJ, Tate KR, Cairns A, Meyrick KF (1980) Influence of storage on soil microbial biomass estimated by three biochemical procedures. Soil Biol Biochem 12:369–374

    Article  Google Scholar 

  12. Jones DL, Shannon D (1999) Mineralization of amino acids applied to soils: impact of soil sieving, storage, and inorganic nitrogen additions. Soil Sci Soc Am J 63:1199–1206

    Article  CAS  Google Scholar 

  13. Cox CS (1993) Roles of water molecules in bacteria and viruses. Orig Life Evol Biosph 23:29–36

    Article  CAS  PubMed  Google Scholar 

  14. Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Burger M, Jackson LE (2003) Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biol Biochem 35:29–36

    Article  CAS  Google Scholar 

  16. Ross DJ, Speir TW, Tate KR, Orchard VA (1985) Effects of sieving on estimations of microbial biomass, and carbon and nitrogen mineralization, in soil under pasture. Aust J Soil Res 23:319–324

    Article  CAS  Google Scholar 

  17. Murphy DV, Bhogal A, Shepherd M, Goulding KWT, Jarvis SC, Barraclough D, Gaunt JL (1999) Comparison of 15N labelling methods to measure gross nitrogen mineralisation. Soil Biol Biochem 31:2015–2024

    Article  CAS  Google Scholar 

  18. Mathieu O, Lévêque J, Hénault C, Ambus P, Milloux M, Andreux F (2007) Influence of 15N enrichment on the net isotopic fractionation factor during the reduction of nitrate to nitrous oxide in soil. Rapid Commun Mass Spectrom 21:1447–1451. https://doi.org/10.1002/rcm.2979

    Article  CAS  PubMed  Google Scholar 

  19. Tang FHM, Maggi F (2012) The effect of 15N to 14N ratio on nitrification, denitrification and dissimilatory nitrate reduction. Rapid Commun Mass Spectrom 26:430–442. https://doi.org/10.1002/rcm.6119

    Article  CAS  PubMed  Google Scholar 

  20. Roberts P, Jones DL (2008) Critical evaluation of methods for determining total protein in soil solution. Soil Biol Biochem 40:1485–1495. https://doi.org/10.1016/j.soilbio.2008.01.001

    Article  CAS  Google Scholar 

  21. Fountoulakis M, Lahm HW (1998) Hydrolysis and amino acid composition analysis of proteins. J Chromatogr A 826:109–134

    Article  CAS  PubMed  Google Scholar 

  22. Corr LT, Berstan R, Evershed RP (2007) Optimisation of derivatisation procedures for the determination of δ13C values of amino acids by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 21:3759–3771. https://doi.org/10.1002/rcm.3252

    Article  CAS  PubMed  Google Scholar 

  23. Corr LT, Berstan R, Evershed RP (2007) Development of N-acetyl methyl ester derivatives for the determination of δ13C values of amino acids using gas chromatography-combustion-isotope ratio mass spectrometry. Anal Chem 79:9082–9090

    Article  CAS  PubMed  Google Scholar 

  24. Mariotti A (1983) Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303:685–687

    Article  CAS  Google Scholar 

  25. Brand WA, Coplen TB, Vogl J, Rosner M, Prohaska T (2014) Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl Chem 86:425–467. https://doi.org/10.1515/pac-2013-1023

    Article  CAS  Google Scholar 

  26. Coplen TB, Krouse HR, Böhlke JR (1992) Reporting of nitrogen-isotope abundances (IUPAC Technical Report). Pure Appl Chem 64:907–908

    Article  Google Scholar 

  27. Meija J, Coplen TB, Berglund M, Brand WA, De Bièvre P, Gröning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T (2016) Isotopic composition of the elements 2013 (IUPAC Technical Report). Pure Appl Chem 88:293–306. https://doi.org/10.1515/pac-2015-0503

    Article  CAS  Google Scholar 

  28. Werner RA, Brand WA (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom 15:501–519

    Article  CAS  PubMed  Google Scholar 

  29. Coplen TB (1988) Normalization of oxygen and hydrogen isotope data. Chem Geol (Isotope Geosci Sect) 72:293–297

    Article  CAS  Google Scholar 

  30. Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271:534–536

    Article  CAS  Google Scholar 

  31. Schimmelmann A, Qi H, Coplen TB, Brand WA, Fong J, Meier-Augustein W, Kemp HF, Toman B, Ackermann A, Assonov S, Aerts-Bijma AT, Brejcha R, Chikaraishi Y, Darwish T, Elsner M, Gehre M, Geilmann H, Gröning M, Hélie J-F, Herrero-Martín S, Meijer HAJ, Sauer PE, Sessions AL, Werner RA (2016) Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl esters, glycines, L-valines, polyethylenes, and oils. Anal Chem 8:4294–4302. https://doi.org/10.1021/acs.analchem.5b04392

    Article  CAS  Google Scholar 

  32. Brand WA, Coplen TB (2012) Stable isotope deltas: tiny, yet robust signatures in nature. Isot Environ Health Stud 48:393–409

    Article  CAS  Google Scholar 

  33. Brenna JT, Corso TN, Tobias HJ, Caimi RJ (1997) High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectrom Rev 16:227–258

    Article  CAS  PubMed  Google Scholar 

  34. Corso TN, Brenna JT (1997) High-precision position-specific isotope analysis. Proc Natl Acad Sci USA 94:1049–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560. https://doi.org/10.1002/rcm.5129

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Fiona Charteris .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charteris, A. (2019). Sites, Sampling, Materials and Methods. In: 15N Tracing of Microbial Assimilation, Partitioning and Transport of Fertilisers in Grassland Soils. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31057-8_2

Download citation

Publish with us

Policies and ethics