Skip to main content

Comparative Analysis Between Training Methods for a Fuzzy Inference System Potentially Applicable to the Assessment of the Health Status of the Spine in Military Personnel

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2019)

Abstract

The Colombian Army personnel are exposed to long training and work periods, which involve abrupt, sudden and unexpected body movements together with carrying excessive loads on their backs. That leads to the development of spine disorders on the short, medium and long term. It also affects the soldier’s quality of life, and has a great economic impact on their families, the Army and the State due to absenteeism, incapacity for work and specialized medical attention. In traumatology, orthopedics and physiatry, pelvic parameters are used to check the sagittal balance and to evaluate the erect position and the spinal function. These parameters also are important in the prevention, diagnosis and treatment of diseases such as scoliosis, spondylolisthesis, herniated discs and others. This work presents and compares various training methods for a computer-assisted system able to assess and classify spinal health status among military personnel. Different methods were used: diffuse inference system designed from experience, supervised learning obtained from a previous study by the ‘Backpropagation’ algorithm, computational evolution by the simple genetic algorithm and automatic learning algorithms and their combinations in classifiers sets with neuronal networks and fuzzy classifier from other previous researches on this topic. The system was trained with a collection of data taken from the UCI´s automatic learning repository, which includes sagittal balance parameters data (pelvis incidence or PI, pelvis inclination or PT, lumbar lordosis angle or LL, sacrum slope or SS). The system was validated by the evaluation of its computational performance and by diagnostic utility measurements. Results show that the simple genetic algorithm brings the highest performance, is the best solution to the problem, and is an excellent tool to help health professionals to leave the zone of diagnostic uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burgio, M., Onyejekwe, O.E.: Degenerative disc disease in the active military special forces and the financial benefits of early detection using a quadruple blind-study. J. Bioequiv. Availab. 10, 1–6 (2018). https://doi.org/10.4172/jbb.1000366

    Article  Google Scholar 

  2. Moscoso, C., Grace, V., Macías, M., Danny, D.: Incidencia de lesiones músculo esqueléticas en columna vertebral en militares en servicio activo que pertenecen a la ESFORSE - Ambato. Universidad Técnica de Ambato - Facultad de Ciencias de la Salud - Carrera de Terapia Física, Ambato (2017)

    Google Scholar 

  3. Childs, J.D., Wu, S.S., Teyhen, D.S., et al.: Prevention of low back pain in the military cluster randomized trial: effects of brief psychosocial education on total and low back pain–related health care costs. Spine J. 14, 571–583 (2014). https://doi.org/10.1016/j.spinee.2013.03.019

    Article  Google Scholar 

  4. Guiroy, A., Gagliardi, M., Sícoli, A., et al.: Spino-pelvic sagittal parameters in an asymptomatic population in Argentina. Surg. Neurol. Int. 9, S36–S42 (2018). https://doi.org/10.4103/sni.sni_365_17

    Article  Google Scholar 

  5. Nguyen, N.-L.M., Baluch, D.A., Patel, A.A.: Cervical Sagittal Balance. Contemp. Spine Surg. 15, 1–7 (2014). https://doi.org/10.1097/01.CSS.0000441214.29279.d0

    Article  Google Scholar 

  6. Roussouly, P., Nnadi, C.: Sagittal plane deformity: an overview of interpretation and management. Eur. Spine J. 19, 1824–1836 (2010). https://doi.org/10.1007/s00586-010-1476-9

    Article  Google Scholar 

  7. Oulas, A., Minadakis, G., Zachariou, M., et al.: Systems bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches. Brief. Bioinform. (2017). https://doi.org/10.1093/bib/bbx151

    Article  Google Scholar 

  8. Michael Kelm, B., Wels, M., Kevin Zhou, S., et al.: Spine detection in CT and MR using iterated marginal space learning. Med. Image Anal. 17, 1283–1292 (2013). https://doi.org/10.1016/J.MEDIA.2012.09.007

    Article  Google Scholar 

  9. Neto, A.R.R., Barreto, G.A.: On the application of ensembles of classifiers to the diagnosis of pathologies of the vertebral column: a comparative analysis. IEEE Lat. Am. Trans. 7, 487–496 (2009). https://doi.org/10.1109/TLA.2009.5349049

    Article  Google Scholar 

  10. Servadei, L., Schmidt, R., Bär, F.: Artificial neural network for supporting medical decision making: a decision model and notation approach to spondylolisthesis and disk hernia. In: Ciuciu, I., Debruyne, C., Panetto, H., Weichhart, G., Bollen, P., Fensel, A., Vidal, M.-E. (eds.) OTM 2016. LNCS, vol. 10034, pp. 217–227. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55961-2_22

    Chapter  Google Scholar 

  11. Huang, M.-L., Hung, Y.-H., Liu, D.-M.: Diagnostic prediction of vertebral column using rough set theory and neural network technique. Inf. Technol. J. 13, 874–884 (2014). https://doi.org/10.3923/itj.2014.874.884

    Article  Google Scholar 

  12. Prasetio, R.T., Riana, D.: A comparison of classification methods in vertebral column disorder with the application of genetic algorithm and bagging. In: 4th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), pp 163–168. IEEE (2015)

    Google Scholar 

  13. Contreras, J., Claudia Bonfante, M., Quintana, A., Castro, V.: Fuzzy classifier for the diagnosis of pathology on the vertebral column. IEEE Lat. Am. Trans. 12, 1149–1154 (2014). https://doi.org/10.1109/TLA.2014.6894013

    Article  Google Scholar 

  14. Kotti, M., Diamantaras, K.I.: Towards minimizing the energy of slack variables for binary classification. In: 20th European Signal Processing Conference (EUSIPCO 2012). EURASIP, Bucharest, pp. 644–648 (2012)

    Google Scholar 

  15. Babalık, A., Babaoğlu, İ., Özkış, A.: A pre-processing approach based on artificial bee colony for classification by support vector machine. Int. J. Comput. Commun. Eng. 68–70 (2013). https://doi.org/10.7763/IJCCE.2013.V2.139

  16. Tebet, M.A.: Conceitos atuais sobre equilíbrio sagital e classificação da espondilólise e espondilolistese. Rev. Bras. Ortop. 49, 3–12 (2014). https://doi.org/10.1016/J.RBO.2013.04.011

    Article  Google Scholar 

  17. Sasani, M., Aydin, A.L., Oktenoglu, T., et al.: The combined use of a posterior dynamic transpedicular stabilization system and a prosthetic disc nucleus device in treating lumbar degenerative disc disease with disc herniations. Int. J. Spine Surg. 2, 130–136 (2008). https://doi.org/10.1016/SASJ-2008-0008-NT

    Article  Google Scholar 

  18. Espitia, H.E., Soriano, J.J.: Sistema de inferencia difusa basado en relaciones Booleanas. Ingeniería 15, 52–66 (2010)

    Google Scholar 

  19. Long, L., Zhao, J.: Adaptive fuzzy output-feedback dynamic surface control of MIMO switched nonlinear systems with unknown gain signs. Fuzzy Sets Syst. 302, 27–51 (2016). https://doi.org/10.1016/J.FSS.2015.12.006

    Article  MathSciNet  MATH  Google Scholar 

  20. Villate, A., Rincon, D.E., Melgarejo, M.A.: Sintonización de Sistemas Difusos utilizando Evolución Diferencial. In: XVIII International Congress of Electronic, Electrical and Systems Engineering, Lima, pp 1–8 (2011)

    Google Scholar 

  21. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965). Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3, 177–200 (1971). Goguen, J.A.: J. Symb. Log. 38, 656–657 (1973). https://doi.org/10.2307/2272014

    Article  Google Scholar 

  22. Baquero Hernández, L.R., Rodríguez Valdés, O., Ciudad Ricardo, F.Á.: Lógica Difusa Basada en la Experiencia del Usuario para Medir la Usabilidad. Rev. Latinoam. Ing. Softw. 4, 48 (2016). https://doi.org/10.18294/relais.2016.48-54

    Article  Google Scholar 

  23. Osisanwo, F.Y., Akinsola, J.E.T., Akinjobi, J., et al.: Supervised machine learning algorithms: classification and comparison. Int. J. Comput. Trends Technol. 48, 128–138 (2017). https://doi.org/10.14445/22312803/IJCTT-V48P126

    Article  Google Scholar 

  24. Celemín-páez, C.E., Martínez-gómez, H.A., Melgarejo, M.: Fuzzy classifiers tuning using genetic algorithms with FCM-based initialization. Ing. y Compet. 15, 9–20 (2013). https://doi.org/10.25100/iyc.v15i1

    Article  Google Scholar 

  25. Dheeru, D., Karra Taniskidou, E.: UCI Machine Learning Repository: Vertebral Column Data Set (2017). http://archive.ics.uci.edu/ml. Accessed 8 June 2017

  26. Bravo, S., Cruz, J.: Estudios de exactitud diagnóstica: Herramientas para su Interpretación Diagnostic accuracy studies: Tools for its Interpretation. Rev. Chil. Radiol. año. (2015). https://doi.org/10.4067/S0717-93082015000400007

    Article  Google Scholar 

  27. Hancock, M., Kent, P.: Interpretation of dichotomous outcomes: risk, odds, risk ratios, odds ratios and number needed to treat. J. Physiother. 62, 172–174 (2016). https://doi.org/10.1016/j.jphys.2016.02.016

    Article  Google Scholar 

  28. Gogtay, N.J., Thatte, U.M.: Statistical Evaluation of Diagnostic Tests (Part 1): Sensitivity, Specificity, Positive and Negative Predictive Values Introduction to Screening and Diagnostic Tests (2017)

    Google Scholar 

  29. Silva Fuente-Alba, C., Molina Villagra, M.: Likelihood ratio (razón de verosimilitud): definición y aplicación en Radiología. Rev. Argentina Radiol. 81, 204–208 (2017). https://doi.org/10.1016/j.rard.2016.11.002

    Article  Google Scholar 

  30. Schwartz, A.: Diagnostic Test Calculator (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabián Garay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garay, F., Gutiérrez, D., Martínez, F., Lombana, D., Ibagué, H., Jiménez, J. (2019). Comparative Analysis Between Training Methods for a Fuzzy Inference System Potentially Applicable to the Assessment of the Health Status of the Spine in Military Personnel. In: Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2019. Communications in Computer and Information Science, vol 1052. Springer, Cham. https://doi.org/10.1007/978-3-030-31019-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31019-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31018-9

  • Online ISBN: 978-3-030-31019-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics