Skip to main content

Validation of Parametric Models in Microelectrode Recordings Acquired from Patients with Parkinson’s Disease

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1052))

Included in the following conference series:

  • 1248 Accesses

Abstract

The Deep Brain Stimulation (DBS) has become one of the most common therapies applied to patients with Parkinson’s disease (PD). Microelectrode recordings (MER) are taken invasively to measure the electrical activity of neurons in the basal ganglia during DBS procedures. The modeling of the MER signals can help to characterize the electrical behavior of the different nuclei along the surgical trajectory. In this paper, we applied linear and nonlinear parametric structures to model MER signals in 19 patients with PD undergoing DBS in two targets of the basal ganglia. We compared the fits obtained by different orders of pure autoregressive (AR) and AR-moving average (ARMA) models, as well as three models with exogenous input – ARX, ARMAX and BoxJenkins. Furthermore, we evaluated the performance of a nonlinear ARX – NARX - model. All comparisons were made in both right and left hemispheres. We found that exogenous input reduces the fit of the model significantly. The best performance was achieved by the AR model, followed by ARMA. Although NARX had better behavior than ARX, ARMAX and BoxJenkins, it did not surpass the fit of the AR and ARMA. Furthermore, we could reduce the order of the AR reported previously by increasing the database considerably. These results are an approach to characterize the MER signals, and could serve as a feature for pattern recognition-based algorithms intended for intraoperative identification of basal ganglia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diazgranados Sánchez, J.A., Chan Guevara, L., Gómez Betancourt, L.F., Lozano Arango, A.F., Ramirez, M.: Description of parkinson disease population in a neurological medical center in Cali, Colombia. Acta Neurológica Colombiana 27(4), 205–210 (2011)

    Google Scholar 

  2. Benabid, A.L., Chabardes, S., Mitrofanis, J., Pollak, P.: Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 8(1), 67–81 (2009)

    Article  Google Scholar 

  3. Brittain, J.S., Brown, P.: Oscillations and the basal ganglia: Motor control and beyond. Neuroimage 85, 637–647 (2014)

    Article  Google Scholar 

  4. Deep-Brain Stimulation for Parkinson’s Disease Study Group: Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N. Engl. J. Med. 345(13), 956–963 (2001)

    Google Scholar 

  5. Basha, D., Dostrovsky, J.O., Rios, A.L.L., Hodaie, M., Lozano, A.M., Hutchison, W.D.: Beta oscillatory neurons in the motor thalamus of movement disorder and pain patients. Exp. Neurol. 261, 782–790 (2014)

    Article  Google Scholar 

  6. Beudel, M., Brown, P.: Adaptive deep brain stimulation in Parkinson’s disease. Parkinsonism & Relat. Disord. 22, S123–S126 (2016)

    Article  Google Scholar 

  7. Yang, A.I., Vanegas, N., Lungu, C., Zaghloul, K.A.: Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson’s disease. J. Neurosci. 34(38), 12816–12827 (2014)

    Article  Google Scholar 

  8. Patel, D.M., Walker, H.C., Brooks, R., Omar, N., Ditty, B., Guthrie, B.L.: Adverse events associated with deep brain stimulation for movement disorders: Analysis of 510 consecutive cases. Operative Neurosurg. 11(1), 190–199 (2015)

    Google Scholar 

  9. Pinzon-Morales, R., Orozco-Gutierrez, A., Castellanos-Dominguez, G.: Novel signal-dependent filter bank method for identification of multiple basal ganglia nuclei in Parkinsonian patients. J. Neural Eng. 8(3), 036026 (2011)

    Article  Google Scholar 

  10. Cagnan, H., et al.: Automatic subthalamic nucleus detection from microelectrode recordings based on noise level and neuronal activity. J. Neural Eng. 8(4), 046006 (2011)

    Article  Google Scholar 

  11. Pinzon-Morales, R.D., Orozco-Gutierrez, A.A., Carmona-Villada, H., Castellanos, C.G.: Towards high accuracy classification of mer signals for target localization in parkinson’s disease. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4040–4043. IEEE (2010)

    Google Scholar 

  12. Valsky, D., et al.: S top! border ahead: Automatic detection of subthalamic exit during deep brain stimulation surgery. Mov. Disord. 32(1), 70–79 (2017)

    Article  Google Scholar 

  13. Wong, S., Baltuch, G., Jaggi, J., Danish, S.: Functional localization and visualization of the subthalamic nucleus from microelectrode recordings acquired during dbs surgery with unsupervised machine learning. J. Neural Eng. 6(2), 026006 (2009)

    Article  Google Scholar 

  14. Rajpurohit, V., Danish, S.F., Hargreaves, E.L., Wong, S.: Optimizing computational feature sets for subthalamic nucleus localization in dbs surgery with feature selection. Clin. Neurophysiol. 126(5), 975–982 (2015)

    Article  Google Scholar 

  15. Chaovalitwongse, W., Jeong, Y., Jeong, M.K., Danish, S., Wong, S.: Pattern recognition approaches for identifying subcortical targets during deep brain stimulation surgery. IEEE Intell. Syst. 26(5), 54–63 (2011)

    Article  Google Scholar 

  16. Chan, H.L., Wu, T., Lee, S.T., Lin, M.A., He, S.M., Chao, P.K., Tsai, Y.T.: Unsupervised wavelet-based spike sorting with dynamic codebook searching and replenishment. Neurocomputing 73(7–9), 1513–1527 (2010)

    Article  Google Scholar 

  17. Moran, A., Bar-Gad, I., Bergman, H., Israel, Z.: Real-time refinement of subthalamic nucleus targeting using bayesian decision-making on the root mean square measure. Mov. Disord. Official J. Mov. Disord. Soc. 21(9), 1425–1431 (2006)

    Article  Google Scholar 

  18. Thompson, J.A., et al.: Semi-automated application for estimating subthalamic nucleus boundaries and optimal target selection for deep brain stimulation implantation surgery. J. Neurosurg. 18, 1–10 (2018)

    Article  Google Scholar 

  19. Li, P., et al.: Autoregressive model in the Lp norm space for EEG analysis. J. Neurosci. Methods 240, 170–178 (2015)

    Article  Google Scholar 

  20. Jerger, K.K., et al.: Early seizure detection. J. Clin. Neurophysiol. 18(3), 259–268 (2001)

    Article  Google Scholar 

  21. Mignolet, M., Red-Horse, J.: Armax identification of vibrating structures-model and model order estimation. In: 35th Structures, Structural Dynamics, and Materials Conference, p. 1525 (1994)

    Google Scholar 

  22. Pukala, J., Sanchez, J.C., Principe, J., Bova, F., Okun, M.: Linear predictive analysis for targeting the basal ganglia in deep brain stimulation surgeries. In: Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering, pp. 192–195. IEEE (2005)

    Google Scholar 

  23. Cassidy, M., et al.: Movement-related changes in synchronization in the human basal ganglia. Brain 125(6), 1235–1246 (2002)

    Article  Google Scholar 

  24. Spyers-Ashby, J., Bain, P., Roberts, S.: A comparison of fast fourier transform (FFT) and autoregressive (AR) spectral estimation techniques for the analysis of tremor data. J. Neurosci. Methods 83(1), 35–43 (1998)

    Article  Google Scholar 

  25. Faust, O., Acharya, R., Allen, A.R., Lin, C.: Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques. IRBM 29(1), 44–52 (2008)

    Article  Google Scholar 

  26. Duque, G.J., Munera, P.A., Trujillo, C.D., Urrego, H.D., Hernandez, V.A.: System for processing and simulation of brain signals. In: IEEE Latin-American Conference on Communications, LATINCOM 2009, pp. 1–6. IEEE (2009)

    Google Scholar 

  27. Tseng, S.Y., Chen, R.C., Chong, F.C., Kuo, T.S.: Evaluation of parametric methods in EEG signal analysis. Med. Eng. Phys. 17(1), 71–78 (1995)

    Article  Google Scholar 

  28. Gomis, P., Lander, P., Caminal, P.: Parametric linear and non-linear modeling techniques for estimating abnormal intra-GRS potentials in the high resolution ECG. WIT Trans. Biomed. Health 3 (1970)

    Google Scholar 

  29. Likothanassis, S., Demiris, E.: Armax model identification with unknown process order and time-varying parameters. In: Procházka, A., Uhlíř, J., Rayner, P.W.J., Kingsbury, N.G. (eds.) Signal Analysis and Prediction. Applied and Numerical Harmonic Analysis, pp. 175–184. Springer, Cham (1998). https://doi.org/10.1007/978-1-4612-1768-8_12

    Chapter  Google Scholar 

  30. Roldán-Vasco, S.: Linear and non-linear autoregressive modeling in subthalamic nucleus for patients with movement disorders. comparison and critical analysis. In: 2014 XIX Symposium on Image, Signal Processing and Artificial Vision (STSIVA), pp. 1–5. IEEE (2014)

    Google Scholar 

  31. Restrepo-Agudelo, S., Roldán-Vasco, S.: Time domain reconstruction of basal ganglia signals in patient with parkinson’s disease. In: 2015 20th Symposium on Signal Processing, Images and Computer Vision (STSIVA), pp. 1–5. IEEE (2015)

    Google Scholar 

  32. Santaniello, S., Fiengo, G., Glielmo, L., Catapano, G.: A biophysically inspired microelectrode recording-based model for the subthalamic nucleus activity in Parkinson’s disease. Biomed. Signal Process. Control 3(3), 203–211 (2008)

    Article  Google Scholar 

  33. Stoica, P., Selen, Y.: Model-order selection: A review of information criterion rules. IEEE Signal Process. Mag. 21(4), 36–47 (2004)

    Article  Google Scholar 

  34. Worden, K., Becker, W., Rogers, T., Cross, E.: On the confidence bounds of gaussian process NARX models and their higher-order frequency response functions. Mech. Syst. Signal Process. 104, 188–223 (2018)

    Article  Google Scholar 

  35. Tomlinson, G., Worden, K.: Nonlinearity in Structural Dynamics: Detection, Identification and Modelling. CRC Press, London (2000)

    MATH  Google Scholar 

  36. Kostoglou, K., Michmizos, K.P., Stathis, P., Sakas, D., Nikita, K.S., Mitsis, G.D.: Classification and prediction of clinical improvement in deep brain stimulation from intraoperative microelectrode recordings. IEEE Trans. Biomed. Eng. 64(5), 1123–1130 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Instituto Tecnológico Metropolitano (code P14222), Medellín, Colombia, with co-execution of Universidad de Antioquia and Hospital Universitario San Vicente Fundación (Medellín and Rionegro).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Roldan-Vasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roldan-Vasco, S., Restrepo-Agudelo, S., Lopez-Rios, A.L., Hutchison, W.D. (2019). Validation of Parametric Models in Microelectrode Recordings Acquired from Patients with Parkinson’s Disease. In: Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2019. Communications in Computer and Information Science, vol 1052. Springer, Cham. https://doi.org/10.1007/978-3-030-31019-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31019-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31018-9

  • Online ISBN: 978-3-030-31019-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics